Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc-cloned / deps / grpc / third_party / boringssl / include / openssl / bn.h
1 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  *
113  * Portions of the attached software ("Contribution") are developed by
114  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115  *
116  * The Contribution is licensed pursuant to the Eric Young open source
117  * license provided above.
118  *
119  * The binary polynomial arithmetic software is originally written by
120  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
121  * Laboratories. */
122
123 #ifndef OPENSSL_HEADER_BN_H
124 #define OPENSSL_HEADER_BN_H
125
126 #include <openssl/base.h>
127 #include <openssl/thread.h>
128
129 #include <inttypes.h>  // for PRIu64 and friends
130 #include <stdio.h>  // for FILE*
131
132 #if defined(__cplusplus)
133 extern "C" {
134 #endif
135
136
137 // BN provides support for working with arbitrary sized integers. For example,
138 // although the largest integer supported by the compiler might be 64 bits, BN
139 // will allow you to work with numbers until you run out of memory.
140
141
142 // BN_ULONG is the native word size when working with big integers.
143 //
144 // Note: on some platforms, inttypes.h does not define print format macros in
145 // C++ unless |__STDC_FORMAT_MACROS| defined. As this is a public header, bn.h
146 // does not define |__STDC_FORMAT_MACROS| itself. C++ source files which use the
147 // FMT macros must define it externally.
148 #if defined(OPENSSL_64_BIT)
149 #define BN_ULONG uint64_t
150 #define BN_BITS2 64
151 #define BN_DEC_FMT1 "%" PRIu64
152 #define BN_DEC_FMT2 "%019" PRIu64
153 #define BN_HEX_FMT1 "%" PRIx64
154 #define BN_HEX_FMT2 "%016" PRIx64
155 #elif defined(OPENSSL_32_BIT)
156 #define BN_ULONG uint32_t
157 #define BN_BITS2 32
158 #define BN_DEC_FMT1 "%" PRIu32
159 #define BN_DEC_FMT2 "%09" PRIu32
160 #define BN_HEX_FMT1 "%" PRIx32
161 #define BN_HEX_FMT2 "%08" PRIx64
162 #else
163 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
164 #endif
165
166
167 // Allocation and freeing.
168
169 // BN_new creates a new, allocated BIGNUM and initialises it.
170 OPENSSL_EXPORT BIGNUM *BN_new(void);
171
172 // BN_init initialises a stack allocated |BIGNUM|.
173 OPENSSL_EXPORT void BN_init(BIGNUM *bn);
174
175 // BN_free frees the data referenced by |bn| and, if |bn| was originally
176 // allocated on the heap, frees |bn| also.
177 OPENSSL_EXPORT void BN_free(BIGNUM *bn);
178
179 // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
180 // originally allocated on the heap, frees |bn| also.
181 OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn);
182
183 // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
184 // allocated BIGNUM on success or NULL otherwise.
185 OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src);
186
187 // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation
188 // failure.
189 OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
190
191 // BN_clear sets |bn| to zero and erases the old data.
192 OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
193
194 // BN_value_one returns a static BIGNUM with value 1.
195 OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
196
197
198 // Basic functions.
199
200 // BN_num_bits returns the minimum number of bits needed to represent the
201 // absolute value of |bn|.
202 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
203
204 // BN_num_bytes returns the minimum number of bytes needed to represent the
205 // absolute value of |bn|.
206 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
207
208 // BN_zero sets |bn| to zero.
209 OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
210
211 // BN_one sets |bn| to one. It returns one on success or zero on allocation
212 // failure.
213 OPENSSL_EXPORT int BN_one(BIGNUM *bn);
214
215 // BN_set_word sets |bn| to |value|. It returns one on success or zero on
216 // allocation failure.
217 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
218
219 // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on
220 // allocation failure.
221 OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value);
222
223 // BN_set_negative sets the sign of |bn|.
224 OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign);
225
226 // BN_is_negative returns one if |bn| is negative and zero otherwise.
227 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
228
229
230 // Conversion functions.
231
232 // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
233 // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
234 // |BIGNUM| is allocated and returned. It returns NULL on allocation
235 // failure.
236 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
237
238 // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
239 // integer, which must have |BN_num_bytes| of space available. It returns the
240 // number of bytes written. Note this function leaks the magnitude of |in|. If
241 // |in| is secret, use |BN_bn2bin_padded| instead.
242 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
243
244 // BN_le2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
245 // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh
246 // |BIGNUM| is allocated and returned. It returns NULL on allocation
247 // failure.
248 OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret);
249
250 // BN_bn2le_padded serialises the absolute value of |in| to |out| as a
251 // little-endian integer, which must have |len| of space available, padding
252 // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|,
253 // the function fails and returns 0. Otherwise, it returns 1.
254 OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in);
255
256 // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
257 // big-endian integer. The integer is padded with leading zeros up to size
258 // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
259 // returns 0. Otherwise, it returns 1.
260 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
261
262 // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|.
263 OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in);
264
265 // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
266 // representation of |bn|. If |bn| is negative, the first char in the resulting
267 // string will be '-'. Returns NULL on allocation failure.
268 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
269
270 // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
271 // a '-' to indicate a negative number and may contain trailing, non-hex data.
272 // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
273 // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
274 // updates |*outp|. It returns the number of bytes of |in| processed or zero on
275 // error.
276 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
277
278 // BN_bn2dec returns an allocated string that contains a NUL-terminated,
279 // decimal representation of |bn|. If |bn| is negative, the first char in the
280 // resulting string will be '-'. Returns NULL on allocation failure.
281 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
282
283 // BN_dec2bn parses the leading decimal number from |in|, which may be
284 // proceeded by a '-' to indicate a negative number and may contain trailing,
285 // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
286 // decimal number and stores it in |*outp|. If |*outp| is NULL then it
287 // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
288 // of |in| processed or zero on error.
289 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
290
291 // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
292 // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
293 // leading '-' is still permitted and comes before the optional 0X/0x. It
294 // returns one on success or zero on error.
295 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
296
297 // BN_print writes a hex encoding of |a| to |bio|. It returns one on success
298 // and zero on error.
299 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
300
301 // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first.
302 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
303
304 // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
305 // too large to be represented as a single word, the maximum possible value
306 // will be returned.
307 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
308
309 // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and
310 // returns one. If |bn| is too large to be represented as a |uint64_t|, it
311 // returns zero.
312 OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out);
313
314
315 // ASN.1 functions.
316
317 // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes
318 // the result to |ret|. It returns one on success and zero on failure.
319 OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret);
320
321 // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the
322 // result to |cbb|. It returns one on success and zero on failure.
323 OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn);
324
325
326 // BIGNUM pools.
327 //
328 // Certain BIGNUM operations need to use many temporary variables and
329 // allocating and freeing them can be quite slow. Thus such operations typically
330 // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
331 // argument to a public function may be NULL, in which case a local |BN_CTX|
332 // will be created just for the lifetime of that call.
333 //
334 // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
335 // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
336 // before calling any other functions that use the |ctx| as an argument.
337 //
338 // Finally, |BN_CTX_end| must be called before returning from the function.
339 // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
340 // |BN_CTX_get| become invalid.
341
342 // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure.
343 OPENSSL_EXPORT BN_CTX *BN_CTX_new(void);
344
345 // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
346 // itself.
347 OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx);
348
349 // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
350 // calls to |BN_CTX_get|.
351 OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx);
352
353 // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
354 // |BN_CTX_get| has returned NULL, all future calls will also return NULL until
355 // |BN_CTX_end| is called.
356 OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx);
357
358 // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
359 // matching |BN_CTX_start| call.
360 OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx);
361
362
363 // Simple arithmetic
364
365 // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
366 // or |b|. It returns one on success and zero on allocation failure.
367 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
368
369 // BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may
370 // be the same pointer as either |a| or |b|. It returns one on success and zero
371 // on allocation failure.
372 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
373
374 // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise.
375 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
376
377 // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a|
378 // or |b|. It returns one on success and zero on allocation failure.
379 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
380
381 // BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers,
382 // |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns
383 // one on success and zero on allocation failure.
384 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
385
386 // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
387 // allocation failure.
388 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
389
390 // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
391 // |b|. Returns one on success and zero otherwise.
392 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
393                           BN_CTX *ctx);
394
395 // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
396 // allocation failure.
397 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
398
399 // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
400 // |a|. Returns one on success and zero otherwise. This is more efficient than
401 // BN_mul(r, a, a, ctx).
402 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
403
404 // BN_div divides |numerator| by |divisor| and places the result in |quotient|
405 // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
406 // which case the respective value is not returned. The result is rounded
407 // towards zero; thus if |numerator| is negative, the remainder will be zero or
408 // negative. It returns one on success or zero on error.
409 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
410                           const BIGNUM *numerator, const BIGNUM *divisor,
411                           BN_CTX *ctx);
412
413 // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
414 // remainder or (BN_ULONG)-1 on error.
415 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
416
417 // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
418 // square root of |in|, using |ctx|. It returns one on success or zero on
419 // error. Negative numbers and non-square numbers will result in an error with
420 // appropriate errors on the error queue.
421 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
422
423
424 // Comparison functions
425
426 // BN_cmp returns a value less than, equal to or greater than zero if |a| is
427 // less than, equal to or greater than |b|, respectively.
428 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
429
430 // BN_cmp_word is like |BN_cmp| except it takes its second argument as a
431 // |BN_ULONG| instead of a |BIGNUM|.
432 OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b);
433
434 // BN_ucmp returns a value less than, equal to or greater than zero if the
435 // absolute value of |a| is less than, equal to or greater than the absolute
436 // value of |b|, respectively.
437 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
438
439 // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise.
440 // It takes an amount of time dependent on the sizes of |a| and |b|, but
441 // independent of the contents (including the signs) of |a| and |b|.
442 OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b);
443
444 // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
445 // otherwise.
446 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
447
448 // BN_is_zero returns one if |bn| is zero and zero otherwise.
449 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
450
451 // BN_is_one returns one if |bn| equals one and zero otherwise.
452 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
453
454 // BN_is_word returns one if |bn| is exactly |w| and zero otherwise.
455 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
456
457 // BN_is_odd returns one if |bn| is odd and zero otherwise.
458 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
459
460 // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise.
461 OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a);
462
463
464 // Bitwise operations.
465
466 // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
467 // same |BIGNUM|. It returns one on success and zero on allocation failure.
468 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
469
470 // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
471 // pointer. It returns one on success and zero on allocation failure.
472 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
473
474 // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
475 // pointer. It returns one on success and zero on allocation failure.
476 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
477
478 // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
479 // pointer. It returns one on success and zero on allocation failure.
480 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
481
482 // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
483 // is 2 then setting bit zero will make it 3. It returns one on success or zero
484 // on allocation failure.
485 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
486
487 // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
488 // |a| is 3, clearing bit zero will make it two. It returns one on success or
489 // zero on allocation failure.
490 OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n);
491
492 // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists
493 // and is set. Otherwise, it returns zero.
494 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
495
496 // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
497 // on success or zero if |n| is negative.
498 //
499 // This differs from OpenSSL which additionally returns zero if |a|'s word
500 // length is less than or equal to |n|, rounded down to a number of words. Note
501 // word size is platform-dependent, so this behavior is also difficult to rely
502 // on in OpenSSL and not very useful.
503 OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n);
504
505 // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or
506 // the number of factors of two which divide it. It returns zero if |bn| is
507 // zero.
508 OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn);
509
510
511 // Modulo arithmetic.
512
513 // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error.
514 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
515
516 // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and
517 // 0 on error.
518 OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
519
520 // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive.
521 // It returns 1 on success and 0 on error.
522 OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e);
523
524 // BN_mod is a helper macro that calls |BN_div| and discards the quotient.
525 #define BN_mod(rem, numerator, divisor, ctx) \
526   BN_div(NULL, (rem), (numerator), (divisor), (ctx))
527
528 // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
529 // |rem| < |divisor| is always true. It returns one on success and zero on
530 // error.
531 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
532                             const BIGNUM *divisor, BN_CTX *ctx);
533
534 // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
535 // on error.
536 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
537                               const BIGNUM *m, BN_CTX *ctx);
538
539 // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
540 // non-negative and less than |m|.
541 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
542                                     const BIGNUM *m);
543
544 // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
545 // on error.
546 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
547                               const BIGNUM *m, BN_CTX *ctx);
548
549 // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
550 // non-negative and less than |m|.
551 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
552                                     const BIGNUM *m);
553
554 // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
555 // on error.
556 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
557                               const BIGNUM *m, BN_CTX *ctx);
558
559 // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero
560 // on error.
561 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
562                               BN_CTX *ctx);
563
564 // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
565 // same pointer. It returns one on success and zero on error.
566 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
567                                  const BIGNUM *m, BN_CTX *ctx);
568
569 // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
570 // non-negative and less than |m|.
571 OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n,
572                                        const BIGNUM *m);
573
574 // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
575 // same pointer. It returns one on success and zero on error.
576 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
577                                   BN_CTX *ctx);
578
579 // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
580 // non-negative and less than |m|.
581 OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a,
582                                         const BIGNUM *m);
583
584 // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that
585 // r^2 == a (mod p). |p| must be a prime. It returns NULL on error or if |a| is
586 // not a square mod |p|. In the latter case, it will add |BN_R_NOT_A_SQUARE| to
587 // the error queue.
588 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
589                                    BN_CTX *ctx);
590
591
592 // Random and prime number generation.
593
594 // The following are values for the |top| parameter of |BN_rand|.
595 #define BN_RAND_TOP_ANY    (-1)
596 #define BN_RAND_TOP_ONE     0
597 #define BN_RAND_TOP_TWO     1
598
599 // The following are values for the |bottom| parameter of |BN_rand|.
600 #define BN_RAND_BOTTOM_ANY  0
601 #define BN_RAND_BOTTOM_ODD  1
602
603 // BN_rand sets |rnd| to a random number of length |bits|. It returns one on
604 // success and zero otherwise.
605 //
606 // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the
607 // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two
608 // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra
609 // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most
610 // significant bits randomly ended up as zeros.
611 //
612 // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If
613 // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If
614 // |BN_RAND_BOTTOM_ANY|, no extra action will be taken.
615 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
616
617 // BN_pseudo_rand is an alias for |BN_rand|.
618 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
619
620 // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set
621 // to zero and |max_exclusive| set to |range|.
622 OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
623
624 // BN_rand_range_ex sets |rnd| to a random value in
625 // [min_inclusive..max_exclusive). It returns one on success and zero
626 // otherwise.
627 OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive,
628                                     const BIGNUM *max_exclusive);
629
630 // BN_pseudo_rand_range is an alias for BN_rand_range.
631 OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
632
633 // BN_GENCB holds a callback function that is used by generation functions that
634 // can take a very long time to complete. Use |BN_GENCB_set| to initialise a
635 // |BN_GENCB| structure.
636 //
637 // The callback receives the address of that |BN_GENCB| structure as its last
638 // argument and the user is free to put an arbitrary pointer in |arg|. The other
639 // arguments are set as follows:
640 //   event=BN_GENCB_GENERATED, n=i:   after generating the i'th possible prime
641 //                                    number.
642 //   event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
643 //                                    checks.
644 //   event=BN_GENCB_PRIME_TEST, n=i:  when the i'th primality test has finished.
645 //
646 // The callback can return zero to abort the generation progress or one to
647 // allow it to continue.
648 //
649 // When other code needs to call a BN generation function it will often take a
650 // BN_GENCB argument and may call the function with other argument values.
651 #define BN_GENCB_GENERATED 0
652 #define BN_GENCB_PRIME_TEST 1
653
654 struct bn_gencb_st {
655   void *arg;        // callback-specific data
656   int (*callback)(int event, int n, struct bn_gencb_st *);
657 };
658
659 // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
660 // |arg|.
661 OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback,
662                                  int (*f)(int event, int n,
663                                           struct bn_gencb_st *),
664                                  void *arg);
665
666 // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
667 // the callback, or 1 if |callback| is NULL.
668 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
669
670 // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
671 // is non-zero then the prime will be such that (ret-1)/2 is also a prime.
672 // (This is needed for Diffie-Hellman groups to ensure that the only subgroups
673 // are of size 2 and (p-1)/2.).
674 //
675 // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
676 // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
677 // |add| == 1.)
678 //
679 // If |cb| is not NULL, it will be called during processing to give an
680 // indication of progress. See the comments for |BN_GENCB|. It returns one on
681 // success and zero otherwise.
682 OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
683                                         const BIGNUM *add, const BIGNUM *rem,
684                                         BN_GENCB *cb);
685
686 // BN_prime_checks is magic value that can be used as the |checks| argument to
687 // the primality testing functions in order to automatically select a number of
688 // Miller-Rabin checks that gives a false positive rate of ~2^{-80}.
689 #define BN_prime_checks 0
690
691 // bn_primality_result_t enumerates the outcomes of primality-testing.
692 enum bn_primality_result_t {
693   bn_probably_prime,
694   bn_composite,
695   bn_non_prime_power_composite,
696 };
697
698 // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime
699 // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with
700 // |iterations| iterations and returns the result in |out_result|. Enhanced
701 // Miller-Rabin tests primality for odd integers greater than 3, returning
702 // |bn_probably_prime| if the number is probably prime,
703 // |bn_non_prime_power_composite| if the number is a composite that is not the
704 // power of a single prime, and |bn_composite| otherwise.  If |iterations| is
705 // |BN_prime_checks|, then a value that results in a false positive rate lower
706 // than the number-field sieve security level of |w| is used. It returns one on
707 // success and zero on failure. If |cb| is not NULL, then it is called during
708 // each iteration of the primality test.
709 OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test(
710     enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
711     BN_CTX *ctx, BN_GENCB *cb);
712
713 // BN_primality_test sets |*is_probably_prime| to one if |candidate| is
714 // probably a prime number by the Miller-Rabin test or zero if it's certainly
715 // not.
716 //
717 // If |do_trial_division| is non-zero then |candidate| will be tested against a
718 // list of small primes before Miller-Rabin tests. The probability of this
719 // function returning a false positive is 2^{2*checks}. If |checks| is
720 // |BN_prime_checks| then a value that results in a false positive rate lower
721 // than the number-field sieve security level of |candidate| is used. If |cb| is
722 // not NULL then it is called during the checking process. See the comment above
723 // |BN_GENCB|.
724 //
725 // The function returns one on success and zero on error.
726 //
727 // (If you are unsure whether you want |do_trial_division|, don't set it.)
728 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
729                                      const BIGNUM *candidate, int checks,
730                                      BN_CTX *ctx, int do_trial_division,
731                                      BN_GENCB *cb);
732
733 // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
734 // number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
735 //
736 // If |do_trial_division| is non-zero then |candidate| will be tested against a
737 // list of small primes before Miller-Rabin tests. The probability of this
738 // function returning one when |candidate| is composite is 2^{2*checks}. If
739 // |checks| is |BN_prime_checks| then a value that results in a false positive
740 // rate lower than the number-field sieve security level of |candidate| is used.
741 // If |cb| is not NULL then it is called during the checking process. See the
742 // comment above |BN_GENCB|.
743 //
744 // WARNING: deprecated. Use |BN_primality_test|.
745 OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks,
746                                            BN_CTX *ctx, int do_trial_division,
747                                            BN_GENCB *cb);
748
749 // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
750 // |do_trial_division| set to zero.
751 //
752 // WARNING: deprecated: Use |BN_primality_test|.
753 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
754                                   BN_CTX *ctx, BN_GENCB *cb);
755
756
757 // Number theory functions
758
759 // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
760 // otherwise.
761 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
762                           BN_CTX *ctx);
763
764 // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a
765 // fresh BIGNUM is allocated. It returns the result or NULL on error.
766 //
767 // If |n| is even then the operation is performed using an algorithm that avoids
768 // some branches but which isn't constant-time. This function shouldn't be used
769 // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is
770 // guaranteed to be prime, use
771 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
772 // advantage of Fermat's Little Theorem.
773 OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a,
774                                       const BIGNUM *n, BN_CTX *ctx);
775
776 // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the
777 // Montgomery modulus for |mont|. |a| must be non-negative and must be less
778 // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random
779 // value) to protect it against side-channel attacks. On failure, if the failure
780 // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be
781 // set to one; otherwise it will be set to zero.
782 //
783 // Note this function may incorrectly report |a| has no inverse if the random
784 // blinding value has no inverse. It should only be used when |n| has few
785 // non-invertible elements, such as an RSA modulus.
786 int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
787                            const BN_MONT_CTX *mont, BN_CTX *ctx);
788
789 // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be
790 // non-negative and must be less than |n|. |n| must be odd. This function
791 // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead.
792 // Or, if |n| is guaranteed to be prime, use
793 // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking
794 // advantage of Fermat's Little Theorem. It returns one on success or zero on
795 // failure. On failure, if the failure was caused by |a| having no inverse mod
796 // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to
797 // zero.
798 int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
799                        const BIGNUM *n, BN_CTX *ctx);
800
801
802 // Montgomery arithmetic.
803
804 // BN_MONT_CTX contains the precomputed values needed to work in a specific
805 // Montgomery domain.
806
807 // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus,
808 // |mod| or NULL on error.
809 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod,
810                                                         BN_CTX *ctx);
811
812 // BN_MONT_CTX_free frees memory associated with |mont|.
813 OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont);
814
815 // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
816 // NULL on error.
817 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,
818                                              const BN_MONT_CTX *from);
819
820 // BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
821 // so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
822 // then stores it as |*pmont|. It returns one on success and zero on error.
823 //
824 // If |*pmont| is already non-NULL then it does nothing and returns one.
825 int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
826                            const BIGNUM *mod, BN_CTX *bn_ctx);
827
828 // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is
829 // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It
830 // returns one on success or zero on error.
831 OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
832                                     const BN_MONT_CTX *mont, BN_CTX *ctx);
833
834 // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out
835 // of the Montgomery domain. |a| is assumed to be in the range [0, n), where |n|
836 // is the Montgomery modulus. It returns one on success or zero on error.
837 OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
838                                       const BN_MONT_CTX *mont, BN_CTX *ctx);
839
840 // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
841 // Both |a| and |b| must already be in the Montgomery domain (by
842 // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the
843 // range [0, n), where |n| is the Montgomery modulus. It returns one on success
844 // or zero on error.
845 OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a,
846                                          const BIGNUM *b,
847                                          const BN_MONT_CTX *mont, BN_CTX *ctx);
848
849
850 // Exponentiation.
851
852 // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
853 // algorithm that leaks side-channel information. It returns one on success or
854 // zero otherwise.
855 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
856                           BN_CTX *ctx);
857
858 // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
859 // algorithm for the values provided. It returns one on success or zero
860 // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the
861 // exponent is secret.
862 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
863                               const BIGNUM *m, BN_CTX *ctx);
864
865 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
866                                    const BIGNUM *m, BN_CTX *ctx,
867                                    const BN_MONT_CTX *mont);
868
869 OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a,
870                                              const BIGNUM *p, const BIGNUM *m,
871                                              BN_CTX *ctx,
872                                              const BN_MONT_CTX *mont);
873
874
875 // Deprecated functions
876
877 // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists
878 // of the number's length in bytes represented as a 4-byte big-endian number,
879 // and the number itself in big-endian format, where the most significant bit
880 // signals a negative number. (The representation of numbers with the MSB set is
881 // prefixed with null byte). |out| must have sufficient space available; to
882 // find the needed amount of space, call the function with |out| set to NULL.
883 OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out);
884
885 // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The
886 // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|.
887 //
888 // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise
889 // |out| is reused and returned. On error, NULL is returned and the error queue
890 // is updated.
891 OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out);
892
893 // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is
894 // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success
895 // or zero otherwise.
896 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
897                                         const BIGNUM *m, BN_CTX *ctx,
898                                         const BN_MONT_CTX *mont);
899
900 // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success
901 // or zero otherwise.
902 OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1,
903                                     const BIGNUM *p1, const BIGNUM *a2,
904                                     const BIGNUM *p2, const BIGNUM *m,
905                                     BN_CTX *ctx, const BN_MONT_CTX *mont);
906
907 // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure.
908 // Use |BN_MONT_CTX_new_for_modulus| instead.
909 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void);
910
911 // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
912 // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus|
913 // instead.
914 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
915                                    BN_CTX *ctx);
916
917
918 // Private functions
919
920 struct bignum_st {
921   // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in
922   // little-endian order. This stores the absolute value of the number.
923   BN_ULONG *d;
924   // width is the number of elements of |d| which are valid. This value is not
925   // necessarily minimal; the most-significant words of |d| may be zero.
926   // |width| determines a potentially loose upper-bound on the absolute value
927   // of the |BIGNUM|.
928   //
929   // Functions taking |BIGNUM| inputs must compute the same answer for all
930   // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other
931   // helpers may be used to recover the minimal width, provided it is not
932   // secret. If it is secret, use a different algorithm. Functions may output
933   // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but
934   // those which cause widths to unboundedly grow beyond the minimal value
935   // should be documented such.
936   //
937   // Note this is different from historical |BIGNUM| semantics.
938   int width;
939   // dmax is number of elements of |d| which are allocated.
940   int dmax;
941   // neg is one if the number if negative and zero otherwise.
942   int neg;
943   // flags is a bitmask of |BN_FLG_*| values
944   int flags;
945 };
946
947 struct bn_mont_ctx_st {
948   // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form.
949   BIGNUM RR;
950   // N is the modulus. It is always stored in minimal form, so |N.top|
951   // determines R.
952   BIGNUM N;
953   BN_ULONG n0[2];  // least significant words of (R*Ri-1)/N
954 };
955
956 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
957
958 #define BN_FLG_MALLOCED 0x01
959 #define BN_FLG_STATIC_DATA 0x02
960 // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying
961 // on it will not compile. Consumers outside BoringSSL should use the
962 // higher-level cryptographic algorithms exposed by other modules. Consumers
963 // within the library should call the appropriate timing-sensitive algorithm
964 // directly.
965
966
967 #if defined(__cplusplus)
968 }  // extern C
969
970 #if !defined(BORINGSSL_NO_CXX)
971 extern "C++" {
972
973 namespace bssl {
974
975 BORINGSSL_MAKE_DELETER(BIGNUM, BN_free)
976 BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free)
977 BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free)
978
979 class BN_CTXScope {
980  public:
981   BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); }
982   ~BN_CTXScope() { BN_CTX_end(ctx_); }
983
984  private:
985   BN_CTX *ctx_;
986
987   BN_CTXScope(BN_CTXScope &) = delete;
988   BN_CTXScope &operator=(BN_CTXScope &) = delete;
989 };
990
991 }  // namespace bssl
992
993 }  // extern C++
994 #endif
995
996 #endif
997
998 #define BN_R_ARG2_LT_ARG3 100
999 #define BN_R_BAD_RECIPROCAL 101
1000 #define BN_R_BIGNUM_TOO_LONG 102
1001 #define BN_R_BITS_TOO_SMALL 103
1002 #define BN_R_CALLED_WITH_EVEN_MODULUS 104
1003 #define BN_R_DIV_BY_ZERO 105
1004 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106
1005 #define BN_R_INPUT_NOT_REDUCED 107
1006 #define BN_R_INVALID_RANGE 108
1007 #define BN_R_NEGATIVE_NUMBER 109
1008 #define BN_R_NOT_A_SQUARE 110
1009 #define BN_R_NOT_INITIALIZED 111
1010 #define BN_R_NO_INVERSE 112
1011 #define BN_R_PRIVATE_KEY_TOO_LARGE 113
1012 #define BN_R_P_IS_NOT_PRIME 114
1013 #define BN_R_TOO_MANY_ITERATIONS 115
1014 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116
1015 #define BN_R_BAD_ENCODING 117
1016 #define BN_R_ENCODE_ERROR 118
1017 #define BN_R_INVALID_INPUT 119
1018
1019 #endif  // OPENSSL_HEADER_BN_H