/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" namespace bssl { int ssl_is_key_type_supported(int key_type) { return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC || key_type == EVP_PKEY_ED25519; } static int ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) { if (!ssl_is_key_type_supported(pkey->type)) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); return 0; } if (cert->chain != NULL && sk_CRYPTO_BUFFER_value(cert->chain, 0) != NULL && // Sanity-check that the private key and the certificate match. !ssl_cert_check_private_key(cert, pkey)) { return 0; } EVP_PKEY_free(cert->privatekey); EVP_PKEY_up_ref(pkey); cert->privatekey = pkey; return 1; } typedef struct { uint16_t sigalg; int pkey_type; int curve; const EVP_MD *(*digest_func)(void); char is_rsa_pss; } SSL_SIGNATURE_ALGORITHM; static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = { {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1, 0}, {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, 0}, {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 0}, {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 0}, {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 0}, {SSL_SIGN_RSA_PSS_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 1}, {SSL_SIGN_RSA_PSS_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 1}, {SSL_SIGN_RSA_PSS_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 1}, {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, 0}, {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1, &EVP_sha256, 0}, {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384, 0}, {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512, 0}, {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, NULL, 0}, }; static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) { for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) { if (kSignatureAlgorithms[i].sigalg == sigalg) { return &kSignatureAlgorithms[i]; } } return NULL; } int ssl_has_private_key(const SSL *ssl) { return ssl->cert->privatekey != NULL || ssl->cert->key_method != NULL; } static int pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey, uint16_t sigalg) { const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); if (alg == NULL || EVP_PKEY_id(pkey) != alg->pkey_type) { return 0; } if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { // RSA keys may only be used with RSA-PSS. if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) { return 0; } // EC keys have a curve requirement. if (alg->pkey_type == EVP_PKEY_EC && (alg->curve == NID_undef || EC_GROUP_get_curve_name( EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) { return 0; } } return 1; } static int setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey, uint16_t sigalg, int is_verify) { if (!pkey_supports_algorithm(ssl, pkey, sigalg)) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL; EVP_PKEY_CTX *pctx; if (is_verify) { if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) { return 0; } } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) { return 0; } if (alg->is_rsa_pss) { if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) || !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) { return 0; } } return 1; } enum ssl_private_key_result_t ssl_private_key_sign( SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, uint16_t sigalg, Span in) { SSL *const ssl = hs->ssl; if (ssl->cert->key_method != NULL) { enum ssl_private_key_result_t ret; if (hs->pending_private_key_op) { ret = ssl->cert->key_method->complete(ssl, out, out_len, max_out); } else { ret = ssl->cert->key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(), in.size()); } if (ret == ssl_private_key_failure) { OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); } hs->pending_private_key_op = ret == ssl_private_key_retry; return ret; } *out_len = max_out; ScopedEVP_MD_CTX ctx; if (!setup_ctx(ssl, ctx.get(), ssl->cert->privatekey, sigalg, 0 /* sign */) || !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) { return ssl_private_key_failure; } return ssl_private_key_success; } bool ssl_public_key_verify(SSL *ssl, Span signature, uint16_t sigalg, EVP_PKEY *pkey, Span in) { ScopedEVP_MD_CTX ctx; return setup_ctx(ssl, ctx.get(), pkey, sigalg, 1 /* verify */) && EVP_DigestVerify(ctx.get(), signature.data(), signature.size(), in.data(), in.size()); } enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, Span in) { SSL *const ssl = hs->ssl; if (ssl->cert->key_method != NULL) { enum ssl_private_key_result_t ret; if (hs->pending_private_key_op) { ret = ssl->cert->key_method->complete(ssl, out, out_len, max_out); } else { ret = ssl->cert->key_method->decrypt(ssl, out, out_len, max_out, in.data(), in.size()); } if (ret == ssl_private_key_failure) { OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED); } hs->pending_private_key_op = ret == ssl_private_key_retry; return ret; } RSA *rsa = EVP_PKEY_get0_RSA(ssl->cert->privatekey); if (rsa == NULL) { // Decrypt operations are only supported for RSA keys. OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return ssl_private_key_failure; } // Decrypt with no padding. PKCS#1 padding will be removed as part of the // timing-sensitive code by the caller. if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(), RSA_NO_PADDING)) { return ssl_private_key_failure; } return ssl_private_key_success; } bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t sigalg) { SSL *const ssl = hs->ssl; if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) { return false; } // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the // hash in TLS. Reasonable RSA key sizes are large enough for the largest // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the // size so that we can fall back to another algorithm in that case. const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) < 2 * EVP_MD_size(alg->digest_func()) + 2) { return false; } return true; } } // namespace bssl using namespace bssl; int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) { if (rsa == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } UniquePtr pkey(EVP_PKEY_new()); if (!pkey || !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); return 0; } return ssl_set_pkey(ssl->cert, pkey.get()); } int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { UniquePtr rsa(RSA_private_key_from_bytes(der, der_len)); if (!rsa) { OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); return 0; } return SSL_use_RSAPrivateKey(ssl, rsa.get()); } int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) { if (pkey == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } return ssl_set_pkey(ssl->cert, pkey); } int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, size_t der_len) { if (der_len > LONG_MAX) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } const uint8_t *p = der; UniquePtr pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); if (!pkey || p != der + der_len) { OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); return 0; } return SSL_use_PrivateKey(ssl, pkey.get()); } int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) { if (rsa == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } UniquePtr pkey(EVP_PKEY_new()); if (!pkey || !EVP_PKEY_set1_RSA(pkey.get(), rsa)) { OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); return 0; } return ssl_set_pkey(ctx->cert, pkey.get()); } int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, size_t der_len) { UniquePtr rsa(RSA_private_key_from_bytes(der, der_len)); if (!rsa) { OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); return 0; } return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get()); } int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) { if (pkey == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } return ssl_set_pkey(ctx->cert, pkey); } int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der, size_t der_len) { if (der_len > LONG_MAX) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return 0; } const uint8_t *p = der; UniquePtr pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len)); if (!pkey || p != der + der_len) { OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); return 0; } return SSL_CTX_use_PrivateKey(ctx, pkey.get()); } void SSL_set_private_key_method(SSL *ssl, const SSL_PRIVATE_KEY_METHOD *key_method) { ssl->cert->key_method = key_method; } void SSL_CTX_set_private_key_method(SSL_CTX *ctx, const SSL_PRIVATE_KEY_METHOD *key_method) { ctx->cert->key_method = key_method; } const char *SSL_get_signature_algorithm_name(uint16_t sigalg, int include_curve) { switch (sigalg) { case SSL_SIGN_RSA_PKCS1_MD5_SHA1: return "rsa_pkcs1_md5_sha1"; case SSL_SIGN_RSA_PKCS1_SHA1: return "rsa_pkcs1_sha1"; case SSL_SIGN_RSA_PKCS1_SHA256: return "rsa_pkcs1_sha256"; case SSL_SIGN_RSA_PKCS1_SHA384: return "rsa_pkcs1_sha384"; case SSL_SIGN_RSA_PKCS1_SHA512: return "rsa_pkcs1_sha512"; case SSL_SIGN_ECDSA_SHA1: return "ecdsa_sha1"; case SSL_SIGN_ECDSA_SECP256R1_SHA256: return include_curve ? "ecdsa_secp256r1_sha256" : "ecdsa_sha256"; case SSL_SIGN_ECDSA_SECP384R1_SHA384: return include_curve ? "ecdsa_secp384r1_sha384" : "ecdsa_sha384"; case SSL_SIGN_ECDSA_SECP521R1_SHA512: return include_curve ? "ecdsa_secp521r1_sha512" : "ecdsa_sha512"; case SSL_SIGN_RSA_PSS_SHA256: return "rsa_pss_sha256"; case SSL_SIGN_RSA_PSS_SHA384: return "rsa_pss_sha384"; case SSL_SIGN_RSA_PSS_SHA512: return "rsa_pss_sha512"; case SSL_SIGN_ED25519: return "ed25519"; default: return NULL; } } int SSL_get_signature_algorithm_key_type(uint16_t sigalg) { const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE; } const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) { const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); if (alg == nullptr || alg->digest_func == nullptr) { return nullptr; } return alg->digest_func(); } int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) { const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg); return alg != nullptr && alg->is_rsa_pss; } static int set_algorithm_prefs(uint16_t **out_prefs, size_t *out_num_prefs, const uint16_t *prefs, size_t num_prefs) { OPENSSL_free(*out_prefs); *out_num_prefs = 0; *out_prefs = (uint16_t *)BUF_memdup(prefs, num_prefs * sizeof(prefs[0])); if (*out_prefs == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } *out_num_prefs = num_prefs; return 1; } int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, size_t num_prefs) { return set_algorithm_prefs(&ctx->cert->sigalgs, &ctx->cert->num_sigalgs, prefs, num_prefs); } int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, size_t num_prefs) { return set_algorithm_prefs(&ssl->cert->sigalgs, &ssl->cert->num_sigalgs, prefs, num_prefs); } int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, size_t num_prefs) { return set_algorithm_prefs(&ctx->verify_sigalgs, &ctx->num_verify_sigalgs, prefs, num_prefs); }