Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc / deps / grpc / third_party / boringssl / crypto / bytestring / bytestring_test.cc
diff --git a/legacy-libs/grpc/deps/grpc/third_party/boringssl/crypto/bytestring/bytestring_test.cc b/legacy-libs/grpc/deps/grpc/third_party/boringssl/crypto/bytestring/bytestring_test.cc
new file mode 100644 (file)
index 0000000..10eac69
--- /dev/null
@@ -0,0 +1,1053 @@
+/* Copyright (c) 2014, Google Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
+
+#if !defined(__STDC_CONSTANT_MACROS)
+#define __STDC_CONSTANT_MACROS
+#endif
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <vector>
+
+#include <gtest/gtest.h>
+
+#include <openssl/bytestring.h>
+#include <openssl/crypto.h>
+
+#include "internal.h"
+#include "../internal.h"
+#include "../test/test_util.h"
+
+
+TEST(CBSTest, Skip) {
+  static const uint8_t kData[] = {1, 2, 3};
+  CBS data;
+
+  CBS_init(&data, kData, sizeof(kData));
+  EXPECT_EQ(3u, CBS_len(&data));
+  EXPECT_TRUE(CBS_skip(&data, 1));
+  EXPECT_EQ(2u, CBS_len(&data));
+  EXPECT_TRUE(CBS_skip(&data, 2));
+  EXPECT_EQ(0u, CBS_len(&data));
+  EXPECT_FALSE(CBS_skip(&data, 1));
+}
+
+TEST(CBSTest, GetUint) {
+  static const uint8_t kData[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
+  uint8_t u8;
+  uint16_t u16;
+  uint32_t u32;
+  CBS data;
+
+  CBS_init(&data, kData, sizeof(kData));
+  ASSERT_TRUE(CBS_get_u8(&data, &u8));
+  EXPECT_EQ(1u, u8);
+  ASSERT_TRUE(CBS_get_u16(&data, &u16));
+  EXPECT_EQ(0x203u, u16);
+  ASSERT_TRUE(CBS_get_u24(&data, &u32));
+  EXPECT_EQ(0x40506u, u32);
+  ASSERT_TRUE(CBS_get_u32(&data, &u32));
+  EXPECT_EQ(0x708090au, u32);
+  ASSERT_TRUE(CBS_get_last_u8(&data, &u8));
+  EXPECT_EQ(0xcu, u8);
+  ASSERT_TRUE(CBS_get_last_u8(&data, &u8));
+  EXPECT_EQ(0xbu, u8);
+  EXPECT_FALSE(CBS_get_u8(&data, &u8));
+  EXPECT_FALSE(CBS_get_last_u8(&data, &u8));
+}
+
+TEST(CBSTest, GetPrefixed) {
+  static const uint8_t kData[] = {1, 2, 0, 2, 3, 4, 0, 0, 3, 3, 2, 1};
+  uint8_t u8;
+  uint16_t u16;
+  uint32_t u32;
+  CBS data, prefixed;
+
+  CBS_init(&data, kData, sizeof(kData));
+  ASSERT_TRUE(CBS_get_u8_length_prefixed(&data, &prefixed));
+  EXPECT_EQ(1u, CBS_len(&prefixed));
+  ASSERT_TRUE(CBS_get_u8(&prefixed, &u8));
+  EXPECT_EQ(2u, u8);
+  ASSERT_TRUE(CBS_get_u16_length_prefixed(&data, &prefixed));
+  EXPECT_EQ(2u, CBS_len(&prefixed));
+  ASSERT_TRUE(CBS_get_u16(&prefixed, &u16));
+  EXPECT_EQ(0x304u, u16);
+  ASSERT_TRUE(CBS_get_u24_length_prefixed(&data, &prefixed));
+  EXPECT_EQ(3u, CBS_len(&prefixed));
+  ASSERT_TRUE(CBS_get_u24(&prefixed, &u32));
+  EXPECT_EQ(0x30201u, u32);
+}
+
+TEST(CBSTest, GetPrefixedBad) {
+  static const uint8_t kData1[] = {2, 1};
+  static const uint8_t kData2[] = {0, 2, 1};
+  static const uint8_t kData3[] = {0, 0, 2, 1};
+  CBS data, prefixed;
+
+  CBS_init(&data, kData1, sizeof(kData1));
+  EXPECT_FALSE(CBS_get_u8_length_prefixed(&data, &prefixed));
+
+  CBS_init(&data, kData2, sizeof(kData2));
+  EXPECT_FALSE(CBS_get_u16_length_prefixed(&data, &prefixed));
+
+  CBS_init(&data, kData3, sizeof(kData3));
+  EXPECT_FALSE(CBS_get_u24_length_prefixed(&data, &prefixed));
+}
+
+TEST(CBSTest, GetASN1) {
+  static const uint8_t kData1[] = {0x30, 2, 1, 2};
+  static const uint8_t kData2[] = {0x30, 3, 1, 2};
+  static const uint8_t kData3[] = {0x30, 0x80};
+  static const uint8_t kData4[] = {0x30, 0x81, 1, 1};
+  static const uint8_t kData5[4 + 0x80] = {0x30, 0x82, 0, 0x80};
+  static const uint8_t kData6[] = {0xa1, 3, 0x4, 1, 1};
+  static const uint8_t kData7[] = {0xa1, 3, 0x4, 2, 1};
+  static const uint8_t kData8[] = {0xa1, 3, 0x2, 1, 1};
+  static const uint8_t kData9[] = {0xa1, 3, 0x2, 1, 0xff};
+
+  CBS data, contents;
+  int present;
+  uint64_t value;
+
+  CBS_init(&data, kData1, sizeof(kData1));
+  EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_BOOLEAN));
+  EXPECT_TRUE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE));
+
+  ASSERT_TRUE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
+  EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents)));
+
+  CBS_init(&data, kData2, sizeof(kData2));
+  // data is truncated
+  EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
+
+  CBS_init(&data, kData3, sizeof(kData3));
+  // zero byte length of length
+  EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
+
+  CBS_init(&data, kData4, sizeof(kData4));
+  // long form mistakenly used.
+  EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
+
+  CBS_init(&data, kData5, sizeof(kData5));
+  // length takes too many bytes.
+  EXPECT_FALSE(CBS_get_asn1(&data, &contents, CBS_ASN1_SEQUENCE));
+
+  CBS_init(&data, kData1, sizeof(kData1));
+  // wrong tag.
+  EXPECT_FALSE(CBS_get_asn1(&data, &contents, 0x31));
+
+  CBS_init(&data, NULL, 0);
+  // peek at empty data.
+  EXPECT_FALSE(CBS_peek_asn1_tag(&data, CBS_ASN1_SEQUENCE));
+
+  CBS_init(&data, NULL, 0);
+  // optional elements at empty data.
+  ASSERT_TRUE(CBS_get_optional_asn1(
+      &data, &contents, &present,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
+  EXPECT_FALSE(present);
+  ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
+      &data, &contents, &present,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
+  EXPECT_FALSE(present);
+  EXPECT_EQ(0u, CBS_len(&contents));
+  ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
+      &data, &contents, NULL,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
+  EXPECT_EQ(0u, CBS_len(&contents));
+  ASSERT_TRUE(CBS_get_optional_asn1_uint64(
+      &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42));
+  EXPECT_EQ(42u, value);
+
+  CBS_init(&data, kData6, sizeof(kData6));
+  // optional element.
+  ASSERT_TRUE(CBS_get_optional_asn1(
+      &data, &contents, &present,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
+  EXPECT_FALSE(present);
+  ASSERT_TRUE(CBS_get_optional_asn1(
+      &data, &contents, &present,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
+  EXPECT_TRUE(present);
+  EXPECT_EQ(Bytes("\x04\x01\x01"),
+            Bytes(CBS_data(&contents), CBS_len(&contents)));
+
+  CBS_init(&data, kData6, sizeof(kData6));
+  // optional octet string.
+  ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
+      &data, &contents, &present,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
+  EXPECT_FALSE(present);
+  EXPECT_EQ(0u, CBS_len(&contents));
+  ASSERT_TRUE(CBS_get_optional_asn1_octet_string(
+      &data, &contents, &present,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
+  EXPECT_TRUE(present);
+  EXPECT_EQ(Bytes("\x01"), Bytes(CBS_data(&contents), CBS_len(&contents)));
+
+  CBS_init(&data, kData7, sizeof(kData7));
+  // invalid optional octet string.
+  EXPECT_FALSE(CBS_get_optional_asn1_octet_string(
+      &data, &contents, &present,
+      CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
+
+  CBS_init(&data, kData8, sizeof(kData8));
+  // optional integer.
+  ASSERT_TRUE(CBS_get_optional_asn1_uint64(
+      &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, 42));
+  EXPECT_EQ(42u, value);
+  ASSERT_TRUE(CBS_get_optional_asn1_uint64(
+      &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42));
+  EXPECT_EQ(1u, value);
+
+  CBS_init(&data, kData9, sizeof(kData9));
+  // invalid optional integer.
+  EXPECT_FALSE(CBS_get_optional_asn1_uint64(
+      &data, &value, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, 42));
+
+  unsigned tag;
+  CBS_init(&data, kData1, sizeof(kData1));
+  ASSERT_TRUE(CBS_get_any_asn1(&data, &contents, &tag));
+  EXPECT_EQ(CBS_ASN1_SEQUENCE, tag);
+  EXPECT_EQ(Bytes("\x01\x02"), Bytes(CBS_data(&contents), CBS_len(&contents)));
+
+  size_t header_len;
+  CBS_init(&data, kData1, sizeof(kData1));
+  ASSERT_TRUE(CBS_get_any_asn1_element(&data, &contents, &tag, &header_len));
+  EXPECT_EQ(CBS_ASN1_SEQUENCE, tag);
+  EXPECT_EQ(2u, header_len);
+  EXPECT_EQ(Bytes("\x30\x02\x01\x02"),
+            Bytes(CBS_data(&contents), CBS_len(&contents)));
+}
+
+TEST(CBSTest, ParseASN1Tag) {
+  const struct {
+    bool ok;
+    unsigned tag;
+    std::vector<uint8_t> in;
+  } kTests[] = {
+      {true, CBS_ASN1_SEQUENCE, {0x30, 0}},
+      {true, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4, {0xa4, 0}},
+      {true, CBS_ASN1_APPLICATION | 30, {0x5e, 0}},
+      {true, CBS_ASN1_APPLICATION | 31, {0x5f, 0x1f, 0}},
+      {true, CBS_ASN1_APPLICATION | 32, {0x5f, 0x20, 0}},
+      {true,
+       CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff,
+       {0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 0}},
+      // Tag number fits in unsigned but not |CBS_ASN1_TAG_NUMBER_MASK|.
+      {false, 0, {0xff, 0x82, 0xff, 0xff, 0xff, 0x7f, 0}},
+      // Tag number does not fit in unsigned.
+      {false, 0, {0xff, 0x90, 0x80, 0x80, 0x80, 0, 0}},
+      // Tag number is not minimally-encoded
+      {false, 0, {0x5f, 0x80, 0x1f, 0}},
+      // Tag number should have used short form.
+      {false, 0, {0x5f, 0x80, 0x1e, 0}},
+  };
+  for (const auto &t : kTests) {
+    SCOPED_TRACE(Bytes(t.in));
+    unsigned tag;
+    CBS cbs, child;
+    CBS_init(&cbs, t.in.data(), t.in.size());
+    ASSERT_EQ(t.ok, !!CBS_get_any_asn1(&cbs, &child, &tag));
+    if (t.ok) {
+      EXPECT_EQ(t.tag, tag);
+      EXPECT_EQ(0u, CBS_len(&child));
+      EXPECT_EQ(0u, CBS_len(&cbs));
+
+      CBS_init(&cbs, t.in.data(), t.in.size());
+      EXPECT_TRUE(CBS_peek_asn1_tag(&cbs, t.tag));
+      EXPECT_FALSE(CBS_peek_asn1_tag(&cbs, t.tag + 1));
+
+      EXPECT_TRUE(CBS_get_asn1(&cbs, &child, t.tag));
+      EXPECT_EQ(0u, CBS_len(&child));
+      EXPECT_EQ(0u, CBS_len(&cbs));
+
+      CBS_init(&cbs, t.in.data(), t.in.size());
+      EXPECT_FALSE(CBS_get_asn1(&cbs, &child, t.tag + 1));
+    }
+  }
+}
+
+TEST(CBSTest, GetOptionalASN1Bool) {
+  static const uint8_t kTrue[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0xff};
+  static const uint8_t kFalse[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x00};
+  static const uint8_t kInvalid[] = {0x0a, 3, CBS_ASN1_BOOLEAN, 1, 0x01};
+
+  CBS data;
+  CBS_init(&data, NULL, 0);
+  int val = 2;
+  ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0));
+  EXPECT_EQ(0, val);
+
+  CBS_init(&data, kTrue, sizeof(kTrue));
+  val = 2;
+  ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 0));
+  EXPECT_EQ(1, val);
+
+  CBS_init(&data, kFalse, sizeof(kFalse));
+  val = 2;
+  ASSERT_TRUE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1));
+  EXPECT_EQ(0, val);
+
+  CBS_init(&data, kInvalid, sizeof(kInvalid));
+  EXPECT_FALSE(CBS_get_optional_asn1_bool(&data, &val, 0x0a, 1));
+}
+
+// Test that CBB_init may be used on an uninitialized input.
+TEST(CBBTest, InitUninitialized) {
+  CBB cbb;
+  ASSERT_TRUE(CBB_init(&cbb, 100));
+  CBB_cleanup(&cbb);
+}
+
+TEST(CBBTest, Basic) {
+  static const uint8_t kExpected[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc};
+  uint8_t *buf;
+  size_t buf_len;
+
+  bssl::ScopedCBB cbb;
+  ASSERT_TRUE(CBB_init(cbb.get(), 100));
+  cbb.Reset();
+
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_u8(cbb.get(), 1));
+  ASSERT_TRUE(CBB_add_u16(cbb.get(), 0x203));
+  ASSERT_TRUE(CBB_add_u24(cbb.get(), 0x40506));
+  ASSERT_TRUE(CBB_add_u32(cbb.get(), 0x708090a));
+  ASSERT_TRUE(CBB_add_bytes(cbb.get(), (const uint8_t *)"\x0b\x0c", 2));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+
+  bssl::UniquePtr<uint8_t> scoper(buf);
+  EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
+}
+
+TEST(CBBTest, Fixed) {
+  bssl::ScopedCBB cbb;
+  uint8_t buf[1];
+  uint8_t *out_buf;
+  size_t out_size;
+
+  ASSERT_TRUE(CBB_init_fixed(cbb.get(), NULL, 0));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size));
+  EXPECT_EQ(NULL, out_buf);
+  EXPECT_EQ(0u, out_size);
+
+  cbb.Reset();
+  ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1));
+  ASSERT_TRUE(CBB_add_u8(cbb.get(), 1));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size));
+  EXPECT_EQ(buf, out_buf);
+  EXPECT_EQ(1u, out_size);
+  EXPECT_EQ(1u, buf[0]);
+
+  cbb.Reset();
+  ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, 1));
+  ASSERT_TRUE(CBB_add_u8(cbb.get(), 1));
+  EXPECT_FALSE(CBB_add_u8(cbb.get(), 2));
+}
+
+// Test that calling CBB_finish on a child does nothing.
+TEST(CBBTest, FinishChild) {
+  CBB child;
+  uint8_t *out_buf;
+  size_t out_size;
+
+  bssl::ScopedCBB cbb;
+  ASSERT_TRUE(CBB_init(cbb.get(), 16));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
+
+  EXPECT_FALSE(CBB_finish(&child, &out_buf, &out_size));
+
+  ASSERT_TRUE(CBB_finish(cbb.get(), &out_buf, &out_size));
+  bssl::UniquePtr<uint8_t> scoper(out_buf);
+  ASSERT_EQ(1u, out_size);
+  EXPECT_EQ(0u, out_buf[0]);
+}
+
+TEST(CBBTest, Prefixed) {
+  static const uint8_t kExpected[] = {0, 1, 1, 0, 2, 2, 3, 0, 0, 3,
+                                      4, 5, 6, 5, 4, 1, 0, 1, 2};
+  uint8_t *buf;
+  size_t buf_len;
+  bssl::ScopedCBB cbb;
+  CBB contents, inner_contents, inner_inner_contents;
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  EXPECT_EQ(0u, CBB_len(cbb.get()));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u8(&contents, 1));
+  EXPECT_EQ(1u, CBB_len(&contents));
+  ASSERT_TRUE(CBB_flush(cbb.get()));
+  EXPECT_EQ(3u, CBB_len(cbb.get()));
+  ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u16(&contents, 0x203));
+  ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u24(&contents, 0x40506));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents));
+  ASSERT_TRUE(CBB_add_u8(&inner_contents, 1));
+  ASSERT_TRUE(
+      CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents));
+  ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 2));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+
+  bssl::UniquePtr<uint8_t> scoper(buf);
+  EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
+}
+
+TEST(CBBTest, DiscardChild) {
+  bssl::ScopedCBB cbb;
+  CBB contents, inner_contents, inner_inner_contents;
+
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_u8(cbb.get(), 0xaa));
+
+  // Discarding |cbb|'s children preserves the byte written.
+  CBB_discard_child(cbb.get());
+
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u8(&contents, 0xbb));
+  ASSERT_TRUE(CBB_add_u16_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u16(&contents, 0xcccc));
+  ASSERT_TRUE(CBB_add_u24_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u24(&contents, 0xdddddd));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &contents));
+  ASSERT_TRUE(CBB_add_u8(&contents, 0xff));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(&contents, &inner_contents));
+  ASSERT_TRUE(CBB_add_u8(&inner_contents, 0x42));
+  ASSERT_TRUE(
+      CBB_add_u16_length_prefixed(&inner_contents, &inner_inner_contents));
+  ASSERT_TRUE(CBB_add_u8(&inner_inner_contents, 0x99));
+
+  // Discard everything from |inner_contents| down.
+  CBB_discard_child(&contents);
+
+  uint8_t *buf;
+  size_t buf_len;
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+  bssl::UniquePtr<uint8_t> scoper(buf);
+
+  static const uint8_t kExpected[] = {
+        0xaa,
+        0,
+        1, 0xbb,
+        0, 2, 0xcc, 0xcc,
+        0, 0, 3, 0xdd, 0xdd, 0xdd,
+        1, 0xff,
+  };
+  EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
+}
+
+TEST(CBBTest, Misuse) {
+  bssl::ScopedCBB cbb;
+  CBB child, contents;
+  uint8_t *buf;
+  size_t buf_len;
+
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
+  ASSERT_TRUE(CBB_add_u8(&child, 1));
+  ASSERT_TRUE(CBB_add_u8(cbb.get(), 2));
+
+  // Since we wrote to |cbb|, |child| is now invalid and attempts to write to
+  // it should fail.
+  EXPECT_FALSE(CBB_add_u8(&child, 1));
+  EXPECT_FALSE(CBB_add_u16(&child, 1));
+  EXPECT_FALSE(CBB_add_u24(&child, 1));
+  EXPECT_FALSE(CBB_add_u8_length_prefixed(&child, &contents));
+  EXPECT_FALSE(CBB_add_u16_length_prefixed(&child, &contents));
+  EXPECT_FALSE(CBB_add_asn1(&child, &contents, 1));
+  EXPECT_FALSE(CBB_add_bytes(&child, (const uint8_t*) "a", 1));
+
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+  bssl::UniquePtr<uint8_t> scoper(buf);
+
+  EXPECT_EQ(Bytes("\x01\x01\x02"), Bytes(buf, buf_len));
+}
+
+TEST(CBBTest, ASN1) {
+  static const uint8_t kExpected[] = {
+      // SEQUENCE { 1 2 3 }
+      0x30, 3, 1, 2, 3,
+      // [4 CONSTRUCTED] { 4 5 6 }
+      0xa4, 3, 4, 5, 6,
+      // [APPLICATION 30 PRIMITIVE] { 7 8 9 }
+      0x5e, 3, 7, 8, 9,
+      // [APPLICATION 31 PRIMITIVE] { 10 11 12 }
+      0x5f, 0x1f, 3, 10, 11, 12,
+      // [PRIVATE 2^29-1 CONSTRUCTED] { 13 14 15 }
+      0xff, 0x81, 0xff, 0xff, 0xff, 0x7f, 3, 13, 14, 15,
+  };
+  uint8_t *buf;
+  size_t buf_len;
+  bssl::ScopedCBB cbb;
+  CBB contents, inner_contents;
+
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
+  ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x01\x02\x03", 3));
+  ASSERT_TRUE(
+      CBB_add_asn1(cbb.get(), &contents,
+                   CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 4));
+  ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x04\x05\x06", 3));
+  ASSERT_TRUE(
+      CBB_add_asn1(cbb.get(), &contents,
+                   CBS_ASN1_APPLICATION | 30));
+  ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x07\x08\x09", 3));
+  ASSERT_TRUE(
+      CBB_add_asn1(cbb.get(), &contents,
+                   CBS_ASN1_APPLICATION | 31));
+  ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0a\x0b\x0c", 3));
+  ASSERT_TRUE(
+      CBB_add_asn1(cbb.get(), &contents,
+                   CBS_ASN1_PRIVATE | CBS_ASN1_CONSTRUCTED | 0x1fffffff));
+  ASSERT_TRUE(CBB_add_bytes(&contents, (const uint8_t *)"\x0d\x0e\x0f", 3));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+  bssl::UniquePtr<uint8_t> scoper(buf);
+
+  EXPECT_EQ(Bytes(kExpected), Bytes(buf, buf_len));
+
+  std::vector<uint8_t> test_data(100000, 0x42);
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
+  ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 130));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+  scoper.reset(buf);
+
+  ASSERT_EQ(3u + 130u, buf_len);
+  EXPECT_EQ(Bytes("\x30\x81\x82"), Bytes(buf, 3));
+  EXPECT_EQ(Bytes(test_data.data(), 130), Bytes(buf + 3, 130));
+
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
+  ASSERT_TRUE(CBB_add_bytes(&contents, test_data.data(), 1000));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+  scoper.reset(buf);
+
+  ASSERT_EQ(4u + 1000u, buf_len);
+  EXPECT_EQ(Bytes("\x30\x82\x03\xe8"), Bytes(buf, 4));
+  EXPECT_EQ(Bytes(test_data.data(), 1000), Bytes(buf + 4, 1000));
+
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_asn1(cbb.get(), &contents, CBS_ASN1_SEQUENCE));
+  ASSERT_TRUE(CBB_add_asn1(&contents, &inner_contents, CBS_ASN1_SEQUENCE));
+  ASSERT_TRUE(CBB_add_bytes(&inner_contents, test_data.data(), 100000));
+  ASSERT_TRUE(CBB_finish(cbb.get(), &buf, &buf_len));
+  scoper.reset(buf);
+
+  ASSERT_EQ(5u + 5u + 100000u, buf_len);
+  EXPECT_EQ(Bytes("\x30\x83\x01\x86\xa5\x30\x83\x01\x86\xa0"), Bytes(buf, 10));
+  EXPECT_EQ(Bytes(test_data.data(), test_data.size()), Bytes(buf + 10, 100000));
+}
+
+static void ExpectBerConvert(const char *name, const uint8_t *der_expected,
+                             size_t der_len, const uint8_t *ber,
+                             size_t ber_len) {
+  SCOPED_TRACE(name);
+  CBS in;
+  uint8_t *out;
+  size_t out_len;
+
+  CBS_init(&in, ber, ber_len);
+  ASSERT_TRUE(CBS_asn1_ber_to_der(&in, &out, &out_len));
+  bssl::UniquePtr<uint8_t> scoper(out);
+
+  if (out == NULL) {
+    EXPECT_EQ(Bytes(der_expected, der_len), Bytes(ber, ber_len));
+  } else {
+    EXPECT_NE(Bytes(der_expected, der_len), Bytes(ber, ber_len));
+    EXPECT_EQ(Bytes(der_expected, der_len), Bytes(out, out_len));
+  }
+}
+
+TEST(CBSTest, BerConvert) {
+  static const uint8_t kSimpleBER[] = {0x01, 0x01, 0x00};
+
+  // kIndefBER contains a SEQUENCE with an indefinite length.
+  static const uint8_t kIndefBER[] = {0x30, 0x80, 0x01, 0x01, 0x02, 0x00, 0x00};
+  static const uint8_t kIndefDER[] = {0x30, 0x03, 0x01, 0x01, 0x02};
+
+  // kIndefBER2 contains a constructed [APPLICATION 31] with an indefinite
+  // length.
+  static const uint8_t kIndefBER2[] = {0x7f, 0x1f, 0x80, 0x01,
+                                       0x01, 0x02, 0x00, 0x00};
+  static const uint8_t kIndefDER2[] = {0x7f, 0x1f, 0x03, 0x01, 0x01, 0x02};
+
+  // kOctetStringBER contains an indefinite length OCTET STRING with two parts.
+  // These parts need to be concatenated in DER form.
+  static const uint8_t kOctetStringBER[] = {0x24, 0x80, 0x04, 0x02, 0,    1,
+                                            0x04, 0x02, 2,    3,    0x00, 0x00};
+  static const uint8_t kOctetStringDER[] = {0x04, 0x04, 0, 1, 2, 3};
+
+  // kNSSBER is part of a PKCS#12 message generated by NSS that uses indefinite
+  // length elements extensively.
+  static const uint8_t kNSSBER[] = {
+      0x30, 0x80, 0x02, 0x01, 0x03, 0x30, 0x80, 0x06, 0x09, 0x2a, 0x86, 0x48,
+      0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x80, 0x24, 0x80, 0x04, 0x04,
+      0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x39,
+      0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
+      0x00, 0x04, 0x14, 0x84, 0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90,
+      0xc1, 0xb6, 0xe8, 0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04,
+      0x10, 0x38, 0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b,
+      0xf0, 0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0, 0x00, 0x00,
+  };
+
+  static const uint8_t kNSSDER[] = {
+      0x30, 0x53, 0x02, 0x01, 0x03, 0x30, 0x13, 0x06, 0x09, 0x2a, 0x86,
+      0x48, 0x86, 0xf7, 0x0d, 0x01, 0x07, 0x01, 0xa0, 0x06, 0x04, 0x04,
+      0x01, 0x02, 0x03, 0x04, 0x30, 0x39, 0x30, 0x21, 0x30, 0x09, 0x06,
+      0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14, 0x84,
+      0x98, 0xfc, 0x66, 0x33, 0xee, 0xba, 0xe7, 0x90, 0xc1, 0xb6, 0xe8,
+      0x8f, 0xfe, 0x1d, 0xc5, 0xa5, 0x97, 0x93, 0x3e, 0x04, 0x10, 0x38,
+      0x62, 0xc6, 0x44, 0x12, 0xd5, 0x30, 0x00, 0xf8, 0xf2, 0x1b, 0xf0,
+      0x6e, 0x10, 0x9b, 0xb8, 0x02, 0x02, 0x07, 0xd0,
+  };
+
+  // kConstructedStringBER contains a deeply-nested constructed OCTET STRING.
+  // The BER conversion collapses this to one level deep, but not completely.
+  static const uint8_t kConstructedStringBER[] = {
+      0xa0, 0x10, 0x24, 0x06, 0x04, 0x01, 0x00, 0x04, 0x01,
+      0x01, 0x24, 0x06, 0x04, 0x01, 0x02, 0x04, 0x01, 0x03,
+  };
+  static const uint8_t kConstructedStringDER[] = {
+      0xa0, 0x08, 0x04, 0x02, 0x00, 0x01, 0x04, 0x02, 0x02, 0x03,
+  };
+
+  ExpectBerConvert("kSimpleBER", kSimpleBER, sizeof(kSimpleBER), kSimpleBER,
+                   sizeof(kSimpleBER));
+  ExpectBerConvert("kIndefBER", kIndefDER, sizeof(kIndefDER), kIndefBER,
+                   sizeof(kIndefBER));
+  ExpectBerConvert("kIndefBER2", kIndefDER2, sizeof(kIndefDER2), kIndefBER2,
+                   sizeof(kIndefBER2));
+  ExpectBerConvert("kOctetStringBER", kOctetStringDER, sizeof(kOctetStringDER),
+                   kOctetStringBER, sizeof(kOctetStringBER));
+  ExpectBerConvert("kNSSBER", kNSSDER, sizeof(kNSSDER), kNSSBER,
+                   sizeof(kNSSBER));
+  ExpectBerConvert("kConstructedStringBER", kConstructedStringDER,
+                   sizeof(kConstructedStringDER), kConstructedStringBER,
+                   sizeof(kConstructedStringBER));
+}
+
+struct ImplicitStringTest {
+  const char *in;
+  size_t in_len;
+  bool ok;
+  const char *out;
+  size_t out_len;
+};
+
+static const ImplicitStringTest kImplicitStringTests[] = {
+    // A properly-encoded string.
+    {"\x80\x03\x61\x61\x61", 5, true, "aaa", 3},
+    // An implicit-tagged string.
+    {"\xa0\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, true, "aaa", 3},
+    // |CBS_get_asn1_implicit_string| only accepts one level deep of nesting.
+    {"\xa0\x0b\x24\x06\x04\x01\x61\x04\x01\x61\x04\x01\x61", 13, false, nullptr,
+     0},
+    // The outer tag must match.
+    {"\x81\x03\x61\x61\x61", 5, false, nullptr, 0},
+    {"\xa1\x09\x04\x01\x61\x04\x01\x61\x04\x01\x61", 11, false, nullptr, 0},
+    // The inner tag must match.
+    {"\xa1\x09\x0c\x01\x61\x0c\x01\x61\x0c\x01\x61", 11, false, nullptr, 0},
+};
+
+TEST(CBSTest, ImplicitString) {
+  for (const auto &test : kImplicitStringTests) {
+    SCOPED_TRACE(Bytes(test.in, test.in_len));
+    uint8_t *storage = nullptr;
+    CBS in, out;
+    CBS_init(&in, reinterpret_cast<const uint8_t *>(test.in), test.in_len);
+    int ok = CBS_get_asn1_implicit_string(&in, &out, &storage,
+                                          CBS_ASN1_CONTEXT_SPECIFIC | 0,
+                                          CBS_ASN1_OCTETSTRING);
+    bssl::UniquePtr<uint8_t> scoper(storage);
+    EXPECT_EQ(test.ok, static_cast<bool>(ok));
+
+    if (ok) {
+      EXPECT_EQ(Bytes(test.out, test.out_len),
+                Bytes(CBS_data(&out), CBS_len(&out)));
+    }
+  }
+}
+
+struct ASN1Uint64Test {
+  uint64_t value;
+  const char *encoding;
+  size_t encoding_len;
+};
+
+static const ASN1Uint64Test kASN1Uint64Tests[] = {
+    {0, "\x02\x01\x00", 3},
+    {1, "\x02\x01\x01", 3},
+    {127, "\x02\x01\x7f", 3},
+    {128, "\x02\x02\x00\x80", 4},
+    {0xdeadbeef, "\x02\x05\x00\xde\xad\xbe\xef", 7},
+    {UINT64_C(0x0102030405060708),
+     "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
+    {UINT64_C(0xffffffffffffffff),
+      "\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
+};
+
+struct ASN1InvalidUint64Test {
+  const char *encoding;
+  size_t encoding_len;
+};
+
+static const ASN1InvalidUint64Test kASN1InvalidUint64Tests[] = {
+    // Bad tag.
+    {"\x03\x01\x00", 3},
+    // Empty contents.
+    {"\x02\x00", 2},
+    // Negative number.
+    {"\x02\x01\x80", 3},
+    // Overflow.
+    {"\x02\x09\x01\x00\x00\x00\x00\x00\x00\x00\x00", 11},
+    // Leading zeros.
+    {"\x02\x02\x00\x01", 4},
+};
+
+TEST(CBSTest, ASN1Uint64) {
+  for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kASN1Uint64Tests); i++) {
+    SCOPED_TRACE(i);
+    const ASN1Uint64Test *test = &kASN1Uint64Tests[i];
+    CBS cbs;
+    uint64_t value;
+    uint8_t *out;
+    size_t len;
+
+    CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len);
+    ASSERT_TRUE(CBS_get_asn1_uint64(&cbs, &value));
+    EXPECT_EQ(0u, CBS_len(&cbs));
+    EXPECT_EQ(test->value, value);
+
+    bssl::ScopedCBB cbb;
+    ASSERT_TRUE(CBB_init(cbb.get(), 0));
+    ASSERT_TRUE(CBB_add_asn1_uint64(cbb.get(), test->value));
+    ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
+    bssl::UniquePtr<uint8_t> scoper(out);
+    EXPECT_EQ(Bytes(test->encoding, test->encoding_len), Bytes(out, len));
+  }
+
+  for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kASN1InvalidUint64Tests); i++) {
+    const ASN1InvalidUint64Test *test = &kASN1InvalidUint64Tests[i];
+    CBS cbs;
+    uint64_t value;
+
+    CBS_init(&cbs, (const uint8_t *)test->encoding, test->encoding_len);
+    EXPECT_FALSE(CBS_get_asn1_uint64(&cbs, &value));
+  }
+}
+
+TEST(CBBTest, Zero) {
+  CBB cbb;
+  CBB_zero(&cbb);
+  // Calling |CBB_cleanup| on a zero-state |CBB| must not crash.
+  CBB_cleanup(&cbb);
+}
+
+TEST(CBBTest, Reserve) {
+  uint8_t buf[10];
+  uint8_t *ptr;
+  size_t len;
+  bssl::ScopedCBB cbb;
+  ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf)));
+  // Too large.
+  EXPECT_FALSE(CBB_reserve(cbb.get(), &ptr, 11));
+
+  cbb.Reset();
+  ASSERT_TRUE(CBB_init_fixed(cbb.get(), buf, sizeof(buf)));
+  // Successfully reserve the entire space.
+  ASSERT_TRUE(CBB_reserve(cbb.get(), &ptr, 10));
+  EXPECT_EQ(buf, ptr);
+  // Advancing under the maximum bytes is legal.
+  ASSERT_TRUE(CBB_did_write(cbb.get(), 5));
+  ASSERT_TRUE(CBB_finish(cbb.get(), NULL, &len));
+  EXPECT_EQ(5u, len);
+}
+
+// Test that CBB errors are sticky; once on operation on CBB fails, all
+// subsequent ones do.
+TEST(CBBTest, StickyError) {
+  // Write an input that exceeds the limit for its length prefix.
+  bssl::ScopedCBB cbb;
+  CBB child;
+  static const uint8_t kZeros[256] = {0};
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_TRUE(CBB_add_u8_length_prefixed(cbb.get(), &child));
+  ASSERT_TRUE(CBB_add_bytes(&child, kZeros, sizeof(kZeros)));
+  ASSERT_FALSE(CBB_flush(cbb.get()));
+
+  // All future operations should fail.
+  uint8_t *ptr;
+  size_t len;
+  EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
+  EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
+
+  // Write an input that cannot fit in a fixed CBB.
+  cbb.Reset();
+  uint8_t buf;
+  ASSERT_TRUE(CBB_init_fixed(cbb.get(), &buf, 1));
+  ASSERT_FALSE(CBB_add_bytes(cbb.get(), kZeros, sizeof(kZeros)));
+
+  // All future operations should fail.
+  EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
+  EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
+
+  // Write a u32 that cannot fit in a u24.
+  cbb.Reset();
+  ASSERT_TRUE(CBB_init(cbb.get(), 0));
+  ASSERT_FALSE(CBB_add_u24(cbb.get(), 1u << 24));
+
+  // All future operations should fail.
+  EXPECT_FALSE(CBB_add_u8(cbb.get(), 0));
+  EXPECT_FALSE(CBB_finish(cbb.get(), &ptr, &len));
+}
+
+TEST(CBSTest, BitString) {
+  static const std::vector<uint8_t> kValidBitStrings[] = {
+      {0x00},                                      // 0 bits
+      {0x07, 0x80},                                // 1 bit
+      {0x04, 0xf0},                                // 4 bits
+      {0x00, 0xff},                                // 8 bits
+      {0x06, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc0},  // 42 bits
+  };
+  for (const auto& test : kValidBitStrings) {
+    SCOPED_TRACE(Bytes(test.data(), test.size()));
+    CBS cbs;
+    CBS_init(&cbs, test.data(), test.size());
+    EXPECT_TRUE(CBS_is_valid_asn1_bitstring(&cbs));
+  }
+
+  static const std::vector<uint8_t> kInvalidBitStrings[] = {
+      // BIT STRINGs always have a leading byte.
+      std::vector<uint8_t>{},
+      // It's not possible to take an unused bit off the empty string.
+      {0x01},
+      // There can be at most 7 unused bits.
+      {0x08, 0xff},
+      {0xff, 0xff},
+      // All unused bits must be cleared.
+      {0x06, 0xff, 0xc1},
+  };
+  for (const auto& test : kInvalidBitStrings) {
+    SCOPED_TRACE(Bytes(test.data(), test.size()));
+    CBS cbs;
+    CBS_init(&cbs, test.data(), test.size());
+    EXPECT_FALSE(CBS_is_valid_asn1_bitstring(&cbs));
+
+    // CBS_asn1_bitstring_has_bit returns false on invalid inputs.
+    EXPECT_FALSE(CBS_asn1_bitstring_has_bit(&cbs, 0));
+  }
+
+  static const struct {
+    std::vector<uint8_t> in;
+    unsigned bit;
+    bool bit_set;
+  } kBitTests[] = {
+      // Basic tests.
+      {{0x00}, 0, false},
+      {{0x07, 0x80}, 0, true},
+      {{0x06, 0x0f, 0x40}, 0, false},
+      {{0x06, 0x0f, 0x40}, 1, false},
+      {{0x06, 0x0f, 0x40}, 2, false},
+      {{0x06, 0x0f, 0x40}, 3, false},
+      {{0x06, 0x0f, 0x40}, 4, true},
+      {{0x06, 0x0f, 0x40}, 5, true},
+      {{0x06, 0x0f, 0x40}, 6, true},
+      {{0x06, 0x0f, 0x40}, 7, true},
+      {{0x06, 0x0f, 0x40}, 8, false},
+      {{0x06, 0x0f, 0x40}, 9, true},
+      // Out-of-bounds bits return 0.
+      {{0x06, 0x0f, 0x40}, 10, false},
+      {{0x06, 0x0f, 0x40}, 15, false},
+      {{0x06, 0x0f, 0x40}, 16, false},
+      {{0x06, 0x0f, 0x40}, 1000, false},
+  };
+  for (const auto& test : kBitTests) {
+    SCOPED_TRACE(Bytes(test.in.data(), test.in.size()));
+    SCOPED_TRACE(test.bit);
+    CBS cbs;
+    CBS_init(&cbs, test.in.data(), test.in.size());
+    EXPECT_EQ(static_cast<int>(test.bit_set),
+              CBS_asn1_bitstring_has_bit(&cbs, test.bit));
+  }
+}
+
+TEST(CBBTest, AddOIDFromText) {
+  const struct {
+    const char *text;
+    std::vector<uint8_t> der;
+  } kValidOIDs[] = {
+      // Some valid values.
+      {"0.0", {0x00}},
+      {"0.2.3.4", {0x2, 0x3, 0x4}},
+      {"1.2.3.4", {0x2a, 0x3, 0x4}},
+      {"2.2.3.4", {0x52, 0x3, 0x4}},
+      {"1.2.840.113554.4.1.72585",
+       {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09}},
+      // Test edge cases around the first component.
+      {"0.39", {0x27}},
+      {"1.0", {0x28}},
+      {"1.39", {0x4f}},
+      {"2.0", {0x50}},
+      {"2.1", {0x51}},
+      {"2.40", {0x78}},
+      // Edge cases near an overflow.
+      {"1.2.18446744073709551615",
+       {0x2a, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}},
+      {"2.18446744073709551535",
+       {0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f}},
+  };
+
+  const char *kInvalidTexts[] = {
+      // Invalid second component.
+      "0.40",
+      "1.40",
+      // Invalid first component.
+      "3.1",
+      // The empty string is not an OID.
+      "",
+      // No empty components.
+      ".1.2.3.4.5",
+      "1..2.3.4.5",
+      "1.2.3.4.5.",
+      // There must be at least two components.
+      "1",
+      // No extra leading zeros.
+      "00.1.2.3.4",
+      "01.1.2.3.4",
+      // Overflow for both components or 40*A + B.
+      "1.2.18446744073709551616",
+      "2.18446744073709551536",
+  };
+
+  const std::vector<uint8_t> kInvalidDER[] = {
+      // The empty string is not an OID.
+      {},
+      // Non-minimal representation.
+      {0x80, 0x01},
+      // Overflow. This is the DER representation of
+      // 1.2.840.113554.4.1.72585.18446744073709551616. (The final value is
+      // 2^64.)
+      {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09,
+       0x82, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00},
+  };
+
+  for (const auto &t : kValidOIDs) {
+    SCOPED_TRACE(t.text);
+
+    bssl::ScopedCBB cbb;
+    ASSERT_TRUE(CBB_init(cbb.get(), 0));
+    ASSERT_TRUE(CBB_add_asn1_oid_from_text(cbb.get(), t.text, strlen(t.text)));
+    uint8_t *out;
+    size_t len;
+    ASSERT_TRUE(CBB_finish(cbb.get(), &out, &len));
+    bssl::UniquePtr<uint8_t> free_out(out);
+    EXPECT_EQ(Bytes(t.der), Bytes(out, len));
+
+    CBS cbs;
+    CBS_init(&cbs, t.der.data(), t.der.size());
+    bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs));
+    ASSERT_TRUE(text.get());
+    EXPECT_STREQ(t.text, text.get());
+  }
+
+  for (const char *t : kInvalidTexts) {
+    SCOPED_TRACE(t);
+    bssl::ScopedCBB cbb;
+    ASSERT_TRUE(CBB_init(cbb.get(), 0));
+    EXPECT_FALSE(CBB_add_asn1_oid_from_text(cbb.get(), t, strlen(t)));
+  }
+
+  for (const auto &t : kInvalidDER) {
+    SCOPED_TRACE(Bytes(t));
+    CBS cbs;
+    CBS_init(&cbs, t.data(), t.size());
+    bssl::UniquePtr<char> text(CBS_asn1_oid_to_text(&cbs));
+    EXPECT_FALSE(text);
+  }
+}
+
+TEST(CBBTest, FlushASN1SetOf) {
+  const struct {
+    std::vector<uint8_t> in, out;
+  } kValidInputs[] = {
+    // No elements.
+    {{}, {}},
+    // One element.
+    {{0x30, 0x00}, {0x30, 0x00}},
+    // Two identical elements.
+    {{0x30, 0x00, 0x30, 0x00}, {0x30, 0x00, 0x30, 0x00}},
+    // clang-format off
+    {{0x30, 0x02, 0x00, 0x00,
+      0x30, 0x00,
+      0x01, 0x00,
+      0x30, 0x02, 0x00, 0x00,
+      0x30, 0x03, 0x00, 0x00, 0x00,
+      0x30, 0x00,
+      0x30, 0x03, 0x00, 0x00, 0x01,
+      0x30, 0x01, 0x00,
+      0x01, 0x01, 0x00},
+     {0x01, 0x00,
+      0x01, 0x01, 0x00,
+      0x30, 0x00,
+      0x30, 0x00,
+      0x30, 0x01, 0x00,
+      0x30, 0x02, 0x00, 0x00,
+      0x30, 0x02, 0x00, 0x00,
+      0x30, 0x03, 0x00, 0x00, 0x00,
+      0x30, 0x03, 0x00, 0x00, 0x01}},
+    // clang-format on
+  };
+
+  for (const auto &t : kValidInputs) {
+    SCOPED_TRACE(Bytes(t.in));
+
+    bssl::ScopedCBB cbb;
+    CBB child;
+    ASSERT_TRUE(CBB_init(cbb.get(), 0));
+    ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET));
+    ASSERT_TRUE(CBB_add_bytes(&child, t.in.data(), t.in.size()));
+    ASSERT_TRUE(CBB_flush_asn1_set_of(&child));
+    EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child)));
+
+    // Running it again should be idempotent.
+    ASSERT_TRUE(CBB_flush_asn1_set_of(&child));
+    EXPECT_EQ(Bytes(t.out), Bytes(CBB_data(&child), CBB_len(&child)));
+
+    // The ASN.1 header remain intact.
+    ASSERT_TRUE(CBB_flush(cbb.get()));
+    EXPECT_EQ(0x31, CBB_data(cbb.get())[0]);
+  }
+
+  const std::vector<uint8_t> kInvalidInputs[] = {
+    {0x30},
+    {0x30, 0x01},
+    {0x30, 0x00, 0x30, 0x00, 0x30, 0x01},
+  };
+
+  for (const auto &t : kInvalidInputs) {
+    SCOPED_TRACE(Bytes(t));
+
+    bssl::ScopedCBB cbb;
+    CBB child;
+    ASSERT_TRUE(CBB_init(cbb.get(), 0));
+    ASSERT_TRUE(CBB_add_asn1(cbb.get(), &child, CBS_ASN1_SET));
+    ASSERT_TRUE(CBB_add_bytes(&child, t.data(), t.size()));
+    EXPECT_FALSE(CBB_flush_asn1_set_of(&child));
+  }
+}