Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc / deps / grpc / third_party / boringssl / crypto / fipsmodule / bn / div.c
diff --git a/legacy-libs/grpc/deps/grpc/third_party/boringssl/crypto/fipsmodule/bn/div.c b/legacy-libs/grpc/deps/grpc/third_party/boringssl/crypto/fipsmodule/bn/div.c
new file mode 100644 (file)
index 0000000..2a3bcdd
--- /dev/null
@@ -0,0 +1,895 @@
+/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
+ * All rights reserved.
+ *
+ * This package is an SSL implementation written
+ * by Eric Young (eay@cryptsoft.com).
+ * The implementation was written so as to conform with Netscapes SSL.
+ *
+ * This library is free for commercial and non-commercial use as long as
+ * the following conditions are aheared to.  The following conditions
+ * apply to all code found in this distribution, be it the RC4, RSA,
+ * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
+ * included with this distribution is covered by the same copyright terms
+ * except that the holder is Tim Hudson (tjh@cryptsoft.com).
+ *
+ * Copyright remains Eric Young's, and as such any Copyright notices in
+ * the code are not to be removed.
+ * If this package is used in a product, Eric Young should be given attribution
+ * as the author of the parts of the library used.
+ * This can be in the form of a textual message at program startup or
+ * in documentation (online or textual) provided with the package.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ *    must display the following acknowledgement:
+ *    "This product includes cryptographic software written by
+ *     Eric Young (eay@cryptsoft.com)"
+ *    The word 'cryptographic' can be left out if the rouines from the library
+ *    being used are not cryptographic related :-).
+ * 4. If you include any Windows specific code (or a derivative thereof) from
+ *    the apps directory (application code) you must include an acknowledgement:
+ *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * The licence and distribution terms for any publically available version or
+ * derivative of this code cannot be changed.  i.e. this code cannot simply be
+ * copied and put under another distribution licence
+ * [including the GNU Public Licence.] */
+
+#include <openssl/bn.h>
+
+#include <assert.h>
+#include <limits.h>
+
+#include <openssl/err.h>
+
+#include "internal.h"
+
+
+#if !defined(BN_ULLONG)
+// bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
+// which must fit in a |BN_ULONG|.
+static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
+  BN_ULONG dh, dl, q, ret = 0, th, tl, t;
+  int i, count = 2;
+
+  if (d == 0) {
+    return BN_MASK2;
+  }
+
+  i = BN_num_bits_word(d);
+  assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
+
+  i = BN_BITS2 - i;
+  if (h >= d) {
+    h -= d;
+  }
+
+  if (i) {
+    d <<= i;
+    h = (h << i) | (l >> (BN_BITS2 - i));
+    l <<= i;
+  }
+  dh = (d & BN_MASK2h) >> BN_BITS4;
+  dl = (d & BN_MASK2l);
+  for (;;) {
+    if ((h >> BN_BITS4) == dh) {
+      q = BN_MASK2l;
+    } else {
+      q = h / dh;
+    }
+
+    th = q * dh;
+    tl = dl * q;
+    for (;;) {
+      t = h - th;
+      if ((t & BN_MASK2h) ||
+          ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
+        break;
+      }
+      q--;
+      th -= dh;
+      tl -= dl;
+    }
+    t = (tl >> BN_BITS4);
+    tl = (tl << BN_BITS4) & BN_MASK2h;
+    th += t;
+
+    if (l < tl) {
+      th++;
+    }
+    l -= tl;
+    if (h < th) {
+      h += d;
+      q--;
+    }
+    h -= th;
+
+    if (--count == 0) {
+      break;
+    }
+
+    ret = q << BN_BITS4;
+    h = (h << BN_BITS4) | (l >> BN_BITS4);
+    l = (l & BN_MASK2l) << BN_BITS4;
+  }
+
+  ret |= q;
+  return ret;
+}
+#endif  // !defined(BN_ULLONG)
+
+static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
+                                    BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
+  // GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
+  // the |BN_ULLONG|-based C code is used.
+  //
+  // GCC bugs:
+  //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
+  //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
+  //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
+  //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
+  //   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
+  //
+  // Clang bugs:
+  //   * https://llvm.org/bugs/show_bug.cgi?id=6397
+  //   * https://llvm.org/bugs/show_bug.cgi?id=12418
+  //
+  // These issues aren't specific to x86 and x86_64, so it might be worthwhile
+  // to add more assembly language implementations.
+#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && \
+    (defined(__GNUC__) || defined(__clang__))
+  __asm__ volatile("divl %4"
+                   : "=a"(*quotient_out), "=d"(*rem_out)
+                   : "a"(n1), "d"(n0), "rm"(d0)
+                   : "cc");
+#elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
+    (defined(__GNUC__) || defined(__clang__))
+  __asm__ volatile("divq %4"
+                   : "=a"(*quotient_out), "=d"(*rem_out)
+                   : "a"(n1), "d"(n0), "rm"(d0)
+                   : "cc");
+#else
+#if defined(BN_ULLONG)
+  BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
+  *quotient_out = (BN_ULONG)(n / d0);
+#else
+  *quotient_out = bn_div_words(n0, n1, d0);
+#endif
+  *rem_out = n1 - (*quotient_out * d0);
+#endif
+}
+
+// BN_div computes "quotient := numerator / divisor", rounding towards zero,
+// and sets up |rem| such that "quotient * divisor + rem = numerator" holds.
+//
+// Thus:
+//
+//     quotient->neg == numerator->neg ^ divisor->neg
+//        (unless the result is zero)
+//     rem->neg == numerator->neg
+//        (unless the remainder is zero)
+//
+// If |quotient| or |rem| is NULL, the respective value is not returned.
+//
+// This was specifically designed to contain fewer branches that may leak
+// sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
+// and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
+// Jean-Pierre Seifert.
+int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator,
+           const BIGNUM *divisor, BN_CTX *ctx) {
+  int norm_shift, loop;
+  BIGNUM wnum;
+  BN_ULONG *resp, *wnump;
+  BN_ULONG d0, d1;
+  int num_n, div_n;
+
+  // This function relies on the historical minimal-width |BIGNUM| invariant.
+  // It is already not constant-time (constant-time reductions should use
+  // Montgomery logic), so we shrink all inputs and intermediate values to
+  // retain the previous behavior.
+
+  // Invalid zero-padding would have particularly bad consequences.
+  int numerator_width = bn_minimal_width(numerator);
+  int divisor_width = bn_minimal_width(divisor);
+  if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) ||
+      (divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) {
+    OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
+    return 0;
+  }
+
+  if (BN_is_zero(divisor)) {
+    OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
+    return 0;
+  }
+
+  BN_CTX_start(ctx);
+  BIGNUM *tmp = BN_CTX_get(ctx);
+  BIGNUM *snum = BN_CTX_get(ctx);
+  BIGNUM *sdiv = BN_CTX_get(ctx);
+  BIGNUM *res = NULL;
+  if (quotient == NULL) {
+    res = BN_CTX_get(ctx);
+  } else {
+    res = quotient;
+  }
+  if (sdiv == NULL || res == NULL) {
+    goto err;
+  }
+
+  // First we normalise the numbers
+  norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2);
+  if (!BN_lshift(sdiv, divisor, norm_shift)) {
+    goto err;
+  }
+  bn_set_minimal_width(sdiv);
+  sdiv->neg = 0;
+  norm_shift += BN_BITS2;
+  if (!BN_lshift(snum, numerator, norm_shift)) {
+    goto err;
+  }
+  bn_set_minimal_width(snum);
+  snum->neg = 0;
+
+  // Since we don't want to have special-case logic for the case where snum is
+  // larger than sdiv, we pad snum with enough zeroes without changing its
+  // value.
+  if (snum->width <= sdiv->width + 1) {
+    if (!bn_wexpand(snum, sdiv->width + 2)) {
+      goto err;
+    }
+    for (int i = snum->width; i < sdiv->width + 2; i++) {
+      snum->d[i] = 0;
+    }
+    snum->width = sdiv->width + 2;
+  } else {
+    if (!bn_wexpand(snum, snum->width + 1)) {
+      goto err;
+    }
+    snum->d[snum->width] = 0;
+    snum->width++;
+  }
+
+  div_n = sdiv->width;
+  num_n = snum->width;
+  loop = num_n - div_n;
+  // Lets setup a 'window' into snum
+  // This is the part that corresponds to the current
+  // 'area' being divided
+  wnum.neg = 0;
+  wnum.d = &(snum->d[loop]);
+  wnum.width = div_n;
+  // only needed when BN_ucmp messes up the values between width and max
+  wnum.dmax = snum->dmax - loop;  // so we don't step out of bounds
+
+  // Get the top 2 words of sdiv
+  // div_n=sdiv->width;
+  d0 = sdiv->d[div_n - 1];
+  d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
+
+  // pointer to the 'top' of snum
+  wnump = &(snum->d[num_n - 1]);
+
+  // Setup to 'res'
+  res->neg = (numerator->neg ^ divisor->neg);
+  if (!bn_wexpand(res, loop + 1)) {
+    goto err;
+  }
+  res->width = loop - 1;
+  resp = &(res->d[loop - 1]);
+
+  // space for temp
+  if (!bn_wexpand(tmp, div_n + 1)) {
+    goto err;
+  }
+
+  // if res->width == 0 then clear the neg value otherwise decrease
+  // the resp pointer
+  if (res->width == 0) {
+    res->neg = 0;
+  } else {
+    resp--;
+  }
+
+  for (int i = 0; i < loop - 1; i++, wnump--, resp--) {
+    BN_ULONG q, l0;
+    // the first part of the loop uses the top two words of snum and sdiv to
+    // calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
+    BN_ULONG n0, n1, rm = 0;
+
+    n0 = wnump[0];
+    n1 = wnump[-1];
+    if (n0 == d0) {
+      q = BN_MASK2;
+    } else {
+      // n0 < d0
+      bn_div_rem_words(&q, &rm, n0, n1, d0);
+
+#ifdef BN_ULLONG
+      BN_ULLONG t2 = (BN_ULLONG)d1 * q;
+      for (;;) {
+        if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) {
+          break;
+        }
+        q--;
+        rm += d0;
+        if (rm < d0) {
+          break;  // don't let rm overflow
+        }
+        t2 -= d1;
+      }
+#else  // !BN_ULLONG
+      BN_ULONG t2l, t2h;
+      BN_UMULT_LOHI(t2l, t2h, d1, q);
+      for (;;) {
+        if (t2h < rm ||
+            (t2h == rm && t2l <= wnump[-2])) {
+          break;
+        }
+        q--;
+        rm += d0;
+        if (rm < d0) {
+          break;  // don't let rm overflow
+        }
+        if (t2l < d1) {
+          t2h--;
+        }
+        t2l -= d1;
+      }
+#endif  // !BN_ULLONG
+    }
+
+    l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
+    tmp->d[div_n] = l0;
+    wnum.d--;
+    // ingore top values of the bignums just sub the two
+    // BN_ULONG arrays with bn_sub_words
+    if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
+      // Note: As we have considered only the leading
+      // two BN_ULONGs in the calculation of q, sdiv * q
+      // might be greater than wnum (but then (q-1) * sdiv
+      // is less or equal than wnum)
+      q--;
+      if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
+        // we can't have an overflow here (assuming
+        // that q != 0, but if q == 0 then tmp is
+        // zero anyway)
+        (*wnump)++;
+      }
+    }
+    // store part of the result
+    *resp = q;
+  }
+
+  bn_set_minimal_width(snum);
+
+  if (rem != NULL) {
+    // Keep a copy of the neg flag in numerator because if |rem| == |numerator|
+    // |BN_rshift| will overwrite it.
+    int neg = numerator->neg;
+    if (!BN_rshift(rem, snum, norm_shift)) {
+      goto err;
+    }
+    if (!BN_is_zero(rem)) {
+      rem->neg = neg;
+    }
+  }
+
+  bn_set_minimal_width(res);
+  BN_CTX_end(ctx);
+  return 1;
+
+err:
+  BN_CTX_end(ctx);
+  return 0;
+}
+
+int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
+  if (!(BN_mod(r, m, d, ctx))) {
+    return 0;
+  }
+  if (!r->neg) {
+    return 1;
+  }
+
+  // now -|d| < r < 0, so we have to set r := r + |d|.
+  return (d->neg ? BN_sub : BN_add)(r, r, d);
+}
+
+// bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch
+// space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
+// |r|, |a|, and |b| may alias.
+static void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+                             const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
+  // r = a - b
+  BN_ULONG borrow = bn_sub_words(r, a, b, num);
+  // tmp = a - b + m
+  bn_add_words(tmp, r, m, num);
+  bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num);
+}
+
+// bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch
+// space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
+// |r|, |a|, and |b| may alias.
+static void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+                             const BN_ULONG *m, BN_ULONG *tmp, size_t num) {
+  // tmp = a + b. Note the result fits in |num|+1 words. We store the extra word
+  // in |carry|.
+  BN_ULONG carry = bn_add_words(tmp, a, b, num);
+  // r = a + b - m. We use |bn_sub_words| to perform the bulk of the
+  // subtraction, and then apply the borrow to |carry|.
+  carry -= bn_sub_words(r, tmp, m, num);
+  // |a| and |b| were both fully-reduced, so we know:
+  //
+  //   0 + 0 - m <= r < m + m - m
+  //          -m <= r < m
+  //
+  // If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then
+  // wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to
+  // return |r| + |m|, or |tmp|. |carry| must then be -1 or all ones. In both
+  // cases, |carry| is a suitable input to |bn_select_words|.
+  //
+  // Although |carry| may be one if |bn_add_words| returns one and
+  // |bn_sub_words| returns zero, this would give |r| > |m|, which violates are
+  // input assumptions.
+  assert(carry == 0 || carry == (BN_ULONG)-1);
+  bn_select_words(r, carry, tmp /* r < 0 */, r /* r >= 0 */, num);
+}
+
+int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
+                     const BIGNUM *numerator, const BIGNUM *divisor,
+                     BN_CTX *ctx) {
+  if (BN_is_negative(numerator) || BN_is_negative(divisor)) {
+    OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
+    return 0;
+  }
+  if (BN_is_zero(divisor)) {
+    OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
+    return 0;
+  }
+
+  // This function implements long division in binary. It is not very efficient,
+  // but it is simple, easy to make constant-time, and performant enough for RSA
+  // key generation.
+
+  int ret = 0;
+  BN_CTX_start(ctx);
+  BIGNUM *q = quotient, *r = remainder;
+  if (quotient == NULL || quotient == numerator || quotient == divisor) {
+    q = BN_CTX_get(ctx);
+  }
+  if (remainder == NULL || remainder == numerator || remainder == divisor) {
+    r = BN_CTX_get(ctx);
+  }
+  BIGNUM *tmp = BN_CTX_get(ctx);
+  if (q == NULL || r == NULL || tmp == NULL ||
+      !bn_wexpand(q, numerator->width) ||
+      !bn_wexpand(r, divisor->width) ||
+      !bn_wexpand(tmp, divisor->width)) {
+    goto err;
+  }
+
+  OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG));
+  q->width = numerator->width;
+  q->neg = 0;
+
+  OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG));
+  r->width = divisor->width;
+  r->neg = 0;
+
+  // Incorporate |numerator| into |r|, one bit at a time, reducing after each
+  // step. At the start of each loop iteration, |r| < |divisor|
+  for (int i = numerator->width - 1; i >= 0; i--) {
+    for (int bit = BN_BITS2 - 1; bit >= 0; bit--) {
+      // Incorporate the next bit of the numerator, by computing
+      // r = 2*r or 2*r + 1. Note the result fits in one more word. We store the
+      // extra word in |carry|.
+      BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width);
+      r->d[0] |= (numerator->d[i] >> bit) & 1;
+      // tmp = r - divisor. We use |bn_sub_words| to perform the bulk of the
+      // subtraction, and then apply the borrow to |carry|.
+      carry -= bn_sub_words(tmp->d, r->d, divisor->d, divisor->width);
+      // |r| was previously fully-reduced, so we know:
+      //
+      //    2*0 - divisor <= tmp <= 2*(divisor-1) + 1 - divisor
+      //         -divisor <= tmp < divisor
+      //
+      // If 0 <= |tmp| < |divisor|, |tmp| fits in |divisor->width| and |carry|
+      // is zero. We then wish to select |tmp|. Otherwise,
+      // -|divisor| <= |tmp| < 0 and we wish to select |tmp| + |divisor|, which
+      // is |r|. |carry| must then be -1 (all ones). In both cases, |carry| is a
+      // suitable input to |bn_select_words|.
+      //
+      // Although |carry| may be one if |bn_add_words| returns one and
+      // |bn_sub_words| returns zero, this would give |r| > |d|, which violates
+      // the loop invariant.
+      bn_select_words(r->d, carry, r->d /* tmp < 0 */, tmp->d /* tmp >= 0 */,
+                      divisor->width);
+      // The corresponding bit of the quotient is set iff we needed to subtract.
+      q->d[i] |= (~carry & 1) << bit;
+    }
+  }
+
+  if ((quotient != NULL && !BN_copy(quotient, q)) ||
+      (remainder != NULL && !BN_copy(remainder, r))) {
+    goto err;
+  }
+
+  ret = 1;
+
+err:
+  BN_CTX_end(ctx);
+  return ret;
+}
+
+static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) {
+  BIGNUM *ret = BN_CTX_get(ctx);
+  if (ret == NULL ||
+      !bn_wexpand(ret, width)) {
+    return NULL;
+  }
+  ret->neg = 0;
+  ret->width = width;
+  return ret;
+}
+
+// bn_resized_from_ctx returns |bn| with width at least |width| or NULL on
+// error. This is so it may be used with low-level "words" functions. If
+// necessary, it allocates a new |BIGNUM| with a lifetime of the current scope
+// in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in
+// |width| words.
+static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width,
+                                         BN_CTX *ctx) {
+  if ((size_t)bn->width >= width) {
+    // Any excess words must be zero.
+    assert(bn_fits_in_words(bn, width));
+    return bn;
+  }
+  BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx);
+  if (ret == NULL ||
+      !BN_copy(ret, bn) ||
+      !bn_resize_words(ret, width)) {
+    return NULL;
+  }
+  return ret;
+}
+
+int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
+               BN_CTX *ctx) {
+  if (!BN_add(r, a, b)) {
+    return 0;
+  }
+  return BN_nnmod(r, r, m, ctx);
+}
+
+int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+                     const BIGNUM *m) {
+  BN_CTX *ctx = BN_CTX_new();
+  int ok = ctx != NULL &&
+           bn_mod_add_consttime(r, a, b, m, ctx);
+  BN_CTX_free(ctx);
+  return ok;
+}
+
+int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+                         const BIGNUM *m, BN_CTX *ctx) {
+  BN_CTX_start(ctx);
+  a = bn_resized_from_ctx(a, m->width, ctx);
+  b = bn_resized_from_ctx(b, m->width, ctx);
+  BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
+  int ok = a != NULL && b != NULL && tmp != NULL &&
+           bn_wexpand(r, m->width);
+  if (ok) {
+    bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
+    r->width = m->width;
+  }
+  BN_CTX_end(ctx);
+  return ok;
+}
+
+int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
+               BN_CTX *ctx) {
+  if (!BN_sub(r, a, b)) {
+    return 0;
+  }
+  return BN_nnmod(r, r, m, ctx);
+}
+
+int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+                         const BIGNUM *m, BN_CTX *ctx) {
+  BN_CTX_start(ctx);
+  a = bn_resized_from_ctx(a, m->width, ctx);
+  b = bn_resized_from_ctx(b, m->width, ctx);
+  BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx);
+  int ok = a != NULL && b != NULL && tmp != NULL &&
+           bn_wexpand(r, m->width);
+  if (ok) {
+    bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width);
+    r->width = m->width;
+  }
+  BN_CTX_end(ctx);
+  return ok;
+}
+
+int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+                     const BIGNUM *m) {
+  BN_CTX *ctx = BN_CTX_new();
+  int ok = ctx != NULL &&
+           bn_mod_sub_consttime(r, a, b, m, ctx);
+  BN_CTX_free(ctx);
+  return ok;
+}
+
+int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
+               BN_CTX *ctx) {
+  BIGNUM *t;
+  int ret = 0;
+
+  BN_CTX_start(ctx);
+  t = BN_CTX_get(ctx);
+  if (t == NULL) {
+    goto err;
+  }
+
+  if (a == b) {
+    if (!BN_sqr(t, a, ctx)) {
+      goto err;
+    }
+  } else {
+    if (!BN_mul(t, a, b, ctx)) {
+      goto err;
+    }
+  }
+
+  if (!BN_nnmod(r, t, m, ctx)) {
+    goto err;
+  }
+
+  ret = 1;
+
+err:
+  BN_CTX_end(ctx);
+  return ret;
+}
+
+int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
+  if (!BN_sqr(r, a, ctx)) {
+    return 0;
+  }
+
+  // r->neg == 0,  thus we don't need BN_nnmod
+  return BN_mod(r, r, m, ctx);
+}
+
+int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
+                  BN_CTX *ctx) {
+  BIGNUM *abs_m = NULL;
+  int ret;
+
+  if (!BN_nnmod(r, a, m, ctx)) {
+    return 0;
+  }
+
+  if (m->neg) {
+    abs_m = BN_dup(m);
+    if (abs_m == NULL) {
+      return 0;
+    }
+    abs_m->neg = 0;
+  }
+
+  ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx);
+
+  BN_free(abs_m);
+  return ret;
+}
+
+int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
+                            BN_CTX *ctx) {
+  if (!BN_copy(r, a)) {
+    return 0;
+  }
+  for (int i = 0; i < n; i++) {
+    if (!bn_mod_lshift1_consttime(r, r, m, ctx)) {
+      return 0;
+    }
+  }
+  return 1;
+}
+
+int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
+  BN_CTX *ctx = BN_CTX_new();
+  int ok = ctx != NULL &&
+           bn_mod_lshift_consttime(r, a, n, m, ctx);
+  BN_CTX_free(ctx);
+  return ok;
+}
+
+int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
+  if (!BN_lshift1(r, a)) {
+    return 0;
+  }
+
+  return BN_nnmod(r, r, m, ctx);
+}
+
+int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
+                             BN_CTX *ctx) {
+  return bn_mod_add_consttime(r, a, a, m, ctx);
+}
+
+int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
+  BN_CTX *ctx = BN_CTX_new();
+  int ok = ctx != NULL &&
+           bn_mod_lshift1_consttime(r, a, m, ctx);
+  BN_CTX_free(ctx);
+  return ok;
+}
+
+BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
+  BN_ULONG ret = 0;
+  int i, j;
+
+  if (!w) {
+    // actually this an error (division by zero)
+    return (BN_ULONG) - 1;
+  }
+
+  if (a->width == 0) {
+    return 0;
+  }
+
+  // normalize input for |bn_div_rem_words|.
+  j = BN_BITS2 - BN_num_bits_word(w);
+  w <<= j;
+  if (!BN_lshift(a, a, j)) {
+    return (BN_ULONG) - 1;
+  }
+
+  for (i = a->width - 1; i >= 0; i--) {
+    BN_ULONG l = a->d[i];
+    BN_ULONG d;
+    BN_ULONG unused_rem;
+    bn_div_rem_words(&d, &unused_rem, ret, l, w);
+    ret = l - (d * w);
+    a->d[i] = d;
+  }
+
+  bn_set_minimal_width(a);
+  ret >>= j;
+  return ret;
+}
+
+BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
+#ifndef BN_CAN_DIVIDE_ULLONG
+  BN_ULONG ret = 0;
+#else
+  BN_ULLONG ret = 0;
+#endif
+  int i;
+
+  if (w == 0) {
+    return (BN_ULONG) -1;
+  }
+
+#ifndef BN_CAN_DIVIDE_ULLONG
+  // If |w| is too long and we don't have |BN_ULLONG| division then we need to
+  // fall back to using |BN_div_word|.
+  if (w > ((BN_ULONG)1 << BN_BITS4)) {
+    BIGNUM *tmp = BN_dup(a);
+    if (tmp == NULL) {
+      return (BN_ULONG)-1;
+    }
+    ret = BN_div_word(tmp, w);
+    BN_free(tmp);
+    return ret;
+  }
+#endif
+
+  for (i = a->width - 1; i >= 0; i--) {
+#ifndef BN_CAN_DIVIDE_ULLONG
+    ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
+    ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
+#else
+    ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
+#endif
+  }
+  return (BN_ULONG)ret;
+}
+
+int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
+  if (e == 0 || a->width == 0) {
+    BN_zero(r);
+    return 1;
+  }
+
+  size_t num_words = 1 + ((e - 1) / BN_BITS2);
+
+  // If |a| definitely has less than |e| bits, just BN_copy.
+  if ((size_t) a->width < num_words) {
+    return BN_copy(r, a) != NULL;
+  }
+
+  // Otherwise, first make sure we have enough space in |r|.
+  // Note that this will fail if num_words > INT_MAX.
+  if (!bn_wexpand(r, num_words)) {
+    return 0;
+  }
+
+  // Copy the content of |a| into |r|.
+  OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
+
+  // If |e| isn't word-aligned, we have to mask off some of our bits.
+  size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
+  if (top_word_exponent != 0) {
+    r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
+  }
+
+  // Fill in the remaining fields of |r|.
+  r->neg = a->neg;
+  r->width = (int) num_words;
+  bn_set_minimal_width(r);
+  return 1;
+}
+
+int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
+  if (!BN_mod_pow2(r, a, e)) {
+    return 0;
+  }
+
+  // If the returned value was non-negative, we're done.
+  if (BN_is_zero(r) || !r->neg) {
+    return 1;
+  }
+
+  size_t num_words = 1 + (e - 1) / BN_BITS2;
+
+  // Expand |r| to the size of our modulus.
+  if (!bn_wexpand(r, num_words)) {
+    return 0;
+  }
+
+  // Clear the upper words of |r|.
+  OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES);
+
+  // Set parameters of |r|.
+  r->neg = 0;
+  r->width = (int) num_words;
+
+  // Now, invert every word. The idea here is that we want to compute 2^e-|x|,
+  // which is actually equivalent to the twos-complement representation of |x|
+  // in |e| bits, which is -x = ~x + 1.
+  for (int i = 0; i < r->width; i++) {
+    r->d[i] = ~r->d[i];
+  }
+
+  // If our exponent doesn't span the top word, we have to mask the rest.
+  size_t top_word_exponent = e % BN_BITS2;
+  if (top_word_exponent != 0) {
+    r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
+  }
+
+  // Keep the minimal-width invariant for |BIGNUM|.
+  bn_set_minimal_width(r);
+
+  // Finally, add one, for the reason described above.
+  return BN_add(r, r, BN_value_one());
+}