Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc / deps / grpc / third_party / boringssl / crypto / pkcs8 / pkcs8.c
diff --git a/legacy-libs/grpc/deps/grpc/third_party/boringssl/crypto/pkcs8/pkcs8.c b/legacy-libs/grpc/deps/grpc/third_party/boringssl/crypto/pkcs8/pkcs8.c
new file mode 100644 (file)
index 0000000..94205e6
--- /dev/null
@@ -0,0 +1,513 @@
+/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
+ * project 1999.
+ */
+/* ====================================================================
+ * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ *    software must display the following acknowledgment:
+ *    "This product includes software developed by the OpenSSL Project
+ *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ *    endorse or promote products derived from this software without
+ *    prior written permission. For written permission, please contact
+ *    licensing@OpenSSL.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ *    nor may "OpenSSL" appear in their names without prior written
+ *    permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ *    acknowledgment:
+ *    "This product includes software developed by the OpenSSL Project
+ *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ *
+ * This product includes cryptographic software written by Eric Young
+ * (eay@cryptsoft.com).  This product includes software written by Tim
+ * Hudson (tjh@cryptsoft.com). */
+
+#include <openssl/pkcs8.h>
+
+#include <assert.h>
+#include <limits.h>
+#include <string.h>
+
+#include <openssl/bytestring.h>
+#include <openssl/cipher.h>
+#include <openssl/digest.h>
+#include <openssl/err.h>
+#include <openssl/mem.h>
+#include <openssl/nid.h>
+#include <openssl/rand.h>
+
+#include "internal.h"
+#include "../internal.h"
+
+
+static int ascii_to_ucs2(const char *ascii, size_t ascii_len,
+                         uint8_t **out, size_t *out_len) {
+  size_t ulen = ascii_len * 2 + 2;
+  if (ascii_len * 2 < ascii_len || ulen < ascii_len * 2) {
+    return 0;
+  }
+
+  uint8_t *unitmp = OPENSSL_malloc(ulen);
+  if (unitmp == NULL) {
+    OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
+    return 0;
+  }
+  for (size_t i = 0; i < ulen - 2; i += 2) {
+    unitmp[i] = 0;
+    unitmp[i + 1] = ascii[i >> 1];
+  }
+
+  // Terminate the result with a UCS-2 NUL.
+  unitmp[ulen - 2] = 0;
+  unitmp[ulen - 1] = 0;
+  *out_len = ulen;
+  *out = unitmp;
+  return 1;
+}
+
+int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt,
+                   size_t salt_len, uint8_t id, unsigned iterations,
+                   size_t out_len, uint8_t *out, const EVP_MD *md) {
+  // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the
+  // specification have errata applied and other typos fixed.
+
+  if (iterations < 1) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
+    return 0;
+  }
+
+  int ret = 0;
+  EVP_MD_CTX ctx;
+  EVP_MD_CTX_init(&ctx);
+  uint8_t *pass_raw = NULL, *I = NULL;
+  size_t pass_raw_len = 0, I_len = 0;
+  // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw
+  // password.
+  if (pass != NULL &&
+      !ascii_to_ucs2(pass, pass_len, &pass_raw, &pass_raw_len)) {
+    goto err;
+  }
+
+  // In the spec, |block_size| is called "v", but measured in bits.
+  size_t block_size = EVP_MD_block_size(md);
+
+  // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies
+  // of ID.
+  uint8_t D[EVP_MAX_MD_BLOCK_SIZE];
+  OPENSSL_memset(D, id, block_size);
+
+  // 2. Concatenate copies of the salt together to create a string S of length
+  // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to
+  // create S). Note that if the salt is the empty string, then so is S.
+  //
+  // 3. Concatenate copies of the password together to create a string P of
+  // length v(ceiling(p/v)) bits (the final copy of the password may be
+  // truncated to create P).  Note that if the password is the empty string,
+  // then so is P.
+  //
+  // 4. Set I=S||P to be the concatenation of S and P.
+  if (salt_len + block_size - 1 < salt_len ||
+      pass_raw_len + block_size - 1 < pass_raw_len) {
+    OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
+    goto err;
+  }
+  size_t S_len = block_size * ((salt_len + block_size - 1) / block_size);
+  size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size);
+  I_len = S_len + P_len;
+  if (I_len < S_len) {
+    OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
+    goto err;
+  }
+
+  I = OPENSSL_malloc(I_len);
+  if (I_len != 0 && I == NULL) {
+    OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
+    goto err;
+  }
+
+  for (size_t i = 0; i < S_len; i++) {
+    I[i] = salt[i % salt_len];
+  }
+  for (size_t i = 0; i < P_len; i++) {
+    I[i + S_len] = pass_raw[i % pass_raw_len];
+  }
+
+  while (out_len != 0) {
+    // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I,
+    // H(H(H(... H(D||I))))
+    uint8_t A[EVP_MAX_MD_SIZE];
+    unsigned A_len;
+    if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
+        !EVP_DigestUpdate(&ctx, D, block_size) ||
+        !EVP_DigestUpdate(&ctx, I, I_len) ||
+        !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
+      goto err;
+    }
+    for (unsigned iter = 1; iter < iterations; iter++) {
+      if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
+          !EVP_DigestUpdate(&ctx, A, A_len) ||
+          !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
+        goto err;
+      }
+    }
+
+    size_t todo = out_len < A_len ? out_len : A_len;
+    OPENSSL_memcpy(out, A, todo);
+    out += todo;
+    out_len -= todo;
+    if (out_len == 0) {
+      break;
+    }
+
+    // B. Concatenate copies of A_i to create a string B of length v bits (the
+    // final copy of A_i may be truncated to create B).
+    uint8_t B[EVP_MAX_MD_BLOCK_SIZE];
+    for (size_t i = 0; i < block_size; i++) {
+      B[i] = A[i % A_len];
+    }
+
+    // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks,
+    // where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod
+    // 2^v for each j.
+    assert(I_len % block_size == 0);
+    for (size_t i = 0; i < I_len; i += block_size) {
+      unsigned carry = 1;
+      for (size_t j = block_size - 1; j < block_size; j--) {
+        carry += I[i + j] + B[j];
+        I[i + j] = (uint8_t)carry;
+        carry >>= 8;
+      }
+    }
+  }
+
+  ret = 1;
+
+err:
+  OPENSSL_free(I);
+  OPENSSL_free(pass_raw);
+  EVP_MD_CTX_cleanup(&ctx);
+  return ret;
+}
+
+static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite,
+                                  EVP_CIPHER_CTX *ctx, unsigned iterations,
+                                  const char *pass, size_t pass_len,
+                                  const uint8_t *salt, size_t salt_len,
+                                  int is_encrypt) {
+  const EVP_CIPHER *cipher = suite->cipher_func();
+  const EVP_MD *md = suite->md_func();
+
+  uint8_t key[EVP_MAX_KEY_LENGTH];
+  uint8_t iv[EVP_MAX_IV_LENGTH];
+  if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations,
+                      EVP_CIPHER_key_length(cipher), key, md) ||
+      !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations,
+                      EVP_CIPHER_iv_length(cipher), iv, md)) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR);
+    return 0;
+  }
+
+  int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
+  OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
+  OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
+  return ret;
+}
+
+static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite,
+                                   EVP_CIPHER_CTX *ctx, const char *pass,
+                                   size_t pass_len, CBS *param) {
+  CBS pbe_param, salt;
+  uint64_t iterations;
+  if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
+      !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) ||
+      !CBS_get_asn1_uint64(&pbe_param, &iterations) ||
+      CBS_len(&pbe_param) != 0 ||
+      CBS_len(param) != 0) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
+    return 0;
+  }
+
+  if (iterations == 0 || iterations > UINT_MAX) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
+    return 0;
+  }
+
+  return pkcs12_pbe_cipher_init(suite, ctx, (unsigned)iterations, pass,
+                                pass_len, CBS_data(&salt), CBS_len(&salt),
+                                0 /* decrypt */);
+}
+
+static const struct pbe_suite kBuiltinPBE[] = {
+    {
+        NID_pbe_WithSHA1And40BitRC2_CBC,
+        // 1.2.840.113549.1.12.1.6
+        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06},
+        10,
+        EVP_rc2_40_cbc,
+        EVP_sha1,
+        pkcs12_pbe_decrypt_init,
+    },
+    {
+        NID_pbe_WithSHA1And128BitRC4,
+        // 1.2.840.113549.1.12.1.1
+        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01},
+        10,
+        EVP_rc4,
+        EVP_sha1,
+        pkcs12_pbe_decrypt_init,
+    },
+    {
+        NID_pbe_WithSHA1And3_Key_TripleDES_CBC,
+        // 1.2.840.113549.1.12.1.3
+        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03},
+        10,
+        EVP_des_ede3_cbc,
+        EVP_sha1,
+        pkcs12_pbe_decrypt_init,
+    },
+    {
+        NID_pbes2,
+        // 1.2.840.113549.1.5.13
+        {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d},
+        9,
+        NULL,
+        NULL,
+        PKCS5_pbe2_decrypt_init,
+    },
+};
+
+static const struct pbe_suite *get_pbe_suite(int pbe_nid) {
+  for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
+    if (kBuiltinPBE[i].pbe_nid == pbe_nid) {
+      return &kBuiltinPBE[i];
+    }
+  }
+
+  return NULL;
+}
+
+static int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg,
+                                   unsigned iterations, const char *pass,
+                                   size_t pass_len, const uint8_t *salt,
+                                   size_t salt_len) {
+  const struct pbe_suite *suite = get_pbe_suite(alg);
+  if (suite == NULL) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
+    return 0;
+  }
+
+  // See RFC 2898, appendix A.3.
+  CBB algorithm, oid, param, salt_cbb;
+  if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
+      !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
+      !CBB_add_bytes(&oid, suite->oid, suite->oid_len) ||
+      !CBB_add_asn1(&algorithm, &param, CBS_ASN1_SEQUENCE) ||
+      !CBB_add_asn1(&param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
+      !CBB_add_bytes(&salt_cbb, salt, salt_len) ||
+      !CBB_add_asn1_uint64(&param, iterations) ||
+      !CBB_flush(out)) {
+    return 0;
+  }
+
+  return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt,
+                                salt_len, 1 /* encrypt */);
+}
+
+int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm,
+                      const char *pass, size_t pass_len, const uint8_t *in,
+                      size_t in_len) {
+  int ret = 0;
+  uint8_t *buf = NULL;;
+  EVP_CIPHER_CTX ctx;
+  EVP_CIPHER_CTX_init(&ctx);
+
+  CBS obj;
+  if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
+    goto err;
+  }
+
+  const struct pbe_suite *suite = NULL;
+  for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
+    if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) {
+      suite = &kBuiltinPBE[i];
+      break;
+    }
+  }
+  if (suite == NULL) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
+    goto err;
+  }
+
+  if (!suite->decrypt_init(suite, &ctx, pass, pass_len, algorithm)) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE);
+    goto err;
+  }
+
+  buf = OPENSSL_malloc(in_len);
+  if (buf == NULL) {
+    OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
+    goto err;
+  }
+
+  if (in_len > INT_MAX) {
+    OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
+    goto err;
+  }
+
+  int n1, n2;
+  if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) ||
+      !EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) {
+    goto err;
+  }
+
+  *out = buf;
+  *out_len = n1 + n2;
+  ret = 1;
+  buf = NULL;
+
+err:
+  OPENSSL_free(buf);
+  EVP_CIPHER_CTX_cleanup(&ctx);
+  return ret;
+}
+
+EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass,
+                                            size_t pass_len) {
+  // See RFC 5208, section 6.
+  CBS epki, algorithm, ciphertext;
+  if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) ||
+      !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) ||
+      !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
+      CBS_len(&epki) != 0) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
+    return 0;
+  }
+
+  uint8_t *out;
+  size_t out_len;
+  if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len,
+                         CBS_data(&ciphertext), CBS_len(&ciphertext))) {
+    return 0;
+  }
+
+  CBS pki;
+  CBS_init(&pki, out, out_len);
+  EVP_PKEY *ret = EVP_parse_private_key(&pki);
+  OPENSSL_free(out);
+  return ret;
+}
+
+int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid,
+                                        const EVP_CIPHER *cipher,
+                                        const char *pass, size_t pass_len,
+                                        const uint8_t *salt, size_t salt_len,
+                                        int iterations, const EVP_PKEY *pkey) {
+  int ret = 0;
+  uint8_t *plaintext = NULL, *salt_buf = NULL;
+  size_t plaintext_len = 0;
+  EVP_CIPHER_CTX ctx;
+  EVP_CIPHER_CTX_init(&ctx);
+
+  // Generate a random salt if necessary.
+  if (salt == NULL) {
+    if (salt_len == 0) {
+      salt_len = PKCS5_SALT_LEN;
+    }
+
+    salt_buf = OPENSSL_malloc(salt_len);
+    if (salt_buf == NULL ||
+        !RAND_bytes(salt_buf, salt_len)) {
+      goto err;
+    }
+
+    salt = salt_buf;
+  }
+
+  if (iterations <= 0) {
+    iterations = PKCS5_DEFAULT_ITERATIONS;
+  }
+
+  // Serialize the input key.
+  CBB plaintext_cbb;
+  if (!CBB_init(&plaintext_cbb, 128) ||
+      !EVP_marshal_private_key(&plaintext_cbb, pkey) ||
+      !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) {
+    CBB_cleanup(&plaintext_cbb);
+    goto err;
+  }
+
+  CBB epki;
+  if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE)) {
+    goto err;
+  }
+
+  int alg_ok;
+  if (pbe_nid == -1) {
+    alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (unsigned)iterations,
+                                     pass, pass_len, salt, salt_len);
+  } else {
+    alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (unsigned)iterations,
+                                     pass, pass_len, salt, salt_len);
+  }
+  if (!alg_ok) {
+    goto err;
+  }
+
+  size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(&ctx);
+  if (max_out < plaintext_len) {
+    OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
+    goto err;
+  }
+
+  CBB ciphertext;
+  uint8_t *ptr;
+  int n1, n2;
+  if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
+      !CBB_reserve(&ciphertext, &ptr, max_out) ||
+      !EVP_CipherUpdate(&ctx, ptr, &n1, plaintext, plaintext_len) ||
+      !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
+      !CBB_did_write(&ciphertext, n1 + n2) ||
+      !CBB_flush(out)) {
+    goto err;
+  }
+
+  ret = 1;
+
+err:
+  OPENSSL_free(plaintext);
+  OPENSSL_free(salt_buf);
+  EVP_CIPHER_CTX_cleanup(&ctx);
+  return ret;
+}