Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc-cloned / deps / grpc / third_party / boringssl / ssl / ssl_privkey.cc
diff --git a/legacy-libs/grpc-cloned/deps/grpc/third_party/boringssl/ssl/ssl_privkey.cc b/legacy-libs/grpc-cloned/deps/grpc/third_party/boringssl/ssl/ssl_privkey.cc
new file mode 100644 (file)
index 0000000..33cc720
--- /dev/null
@@ -0,0 +1,494 @@
+/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
+ * All rights reserved.
+ *
+ * This package is an SSL implementation written
+ * by Eric Young (eay@cryptsoft.com).
+ * The implementation was written so as to conform with Netscapes SSL.
+ *
+ * This library is free for commercial and non-commercial use as long as
+ * the following conditions are aheared to.  The following conditions
+ * apply to all code found in this distribution, be it the RC4, RSA,
+ * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
+ * included with this distribution is covered by the same copyright terms
+ * except that the holder is Tim Hudson (tjh@cryptsoft.com).
+ *
+ * Copyright remains Eric Young's, and as such any Copyright notices in
+ * the code are not to be removed.
+ * If this package is used in a product, Eric Young should be given attribution
+ * as the author of the parts of the library used.
+ * This can be in the form of a textual message at program startup or
+ * in documentation (online or textual) provided with the package.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ *    must display the following acknowledgement:
+ *    "This product includes cryptographic software written by
+ *     Eric Young (eay@cryptsoft.com)"
+ *    The word 'cryptographic' can be left out if the rouines from the library
+ *    being used are not cryptographic related :-).
+ * 4. If you include any Windows specific code (or a derivative thereof) from
+ *    the apps directory (application code) you must include an acknowledgement:
+ *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * The licence and distribution terms for any publically available version or
+ * derivative of this code cannot be changed.  i.e. this code cannot simply be
+ * copied and put under another distribution licence
+ * [including the GNU Public Licence.] */
+
+#include <openssl/ssl.h>
+
+#include <assert.h>
+#include <limits.h>
+
+#include <openssl/ec.h>
+#include <openssl/ec_key.h>
+#include <openssl/err.h>
+#include <openssl/evp.h>
+#include <openssl/mem.h>
+
+#include "internal.h"
+#include "../crypto/internal.h"
+
+
+namespace bssl {
+
+int ssl_is_key_type_supported(int key_type) {
+  return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
+         key_type == EVP_PKEY_ED25519;
+}
+
+static int ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
+  if (!ssl_is_key_type_supported(pkey->type)) {
+    OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
+    return 0;
+  }
+
+  if (cert->chain != NULL &&
+      sk_CRYPTO_BUFFER_value(cert->chain, 0) != NULL &&
+      // Sanity-check that the private key and the certificate match.
+      !ssl_cert_check_private_key(cert, pkey)) {
+    return 0;
+  }
+
+  EVP_PKEY_free(cert->privatekey);
+  EVP_PKEY_up_ref(pkey);
+  cert->privatekey = pkey;
+
+  return 1;
+}
+
+typedef struct {
+  uint16_t sigalg;
+  int pkey_type;
+  int curve;
+  const EVP_MD *(*digest_func)(void);
+  char is_rsa_pss;
+} SSL_SIGNATURE_ALGORITHM;
+
+static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
+    {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1, 0},
+    {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, 0},
+    {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 0},
+    {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 0},
+    {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 0},
+
+    {SSL_SIGN_RSA_PSS_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, 1},
+    {SSL_SIGN_RSA_PSS_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, 1},
+    {SSL_SIGN_RSA_PSS_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, 1},
+
+    {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, 0},
+    {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
+     &EVP_sha256, 0},
+    {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
+     0},
+    {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
+     0},
+
+    {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, NULL, 0},
+};
+
+static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
+  for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
+    if (kSignatureAlgorithms[i].sigalg == sigalg) {
+      return &kSignatureAlgorithms[i];
+    }
+  }
+  return NULL;
+}
+
+int ssl_has_private_key(const SSL *ssl) {
+  return ssl->cert->privatekey != NULL || ssl->cert->key_method != NULL;
+}
+
+static int pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
+                                   uint16_t sigalg) {
+  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
+  if (alg == NULL ||
+      EVP_PKEY_id(pkey) != alg->pkey_type) {
+    return 0;
+  }
+
+  if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
+    // RSA keys may only be used with RSA-PSS.
+    if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
+      return 0;
+    }
+
+    // EC keys have a curve requirement.
+    if (alg->pkey_type == EVP_PKEY_EC &&
+        (alg->curve == NID_undef ||
+         EC_GROUP_get_curve_name(
+             EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
+      return 0;
+    }
+  }
+
+  return 1;
+}
+
+static int setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey, uint16_t sigalg,
+                     int is_verify) {
+  if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
+    OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
+    return 0;
+  }
+
+  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
+  const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
+  EVP_PKEY_CTX *pctx;
+  if (is_verify) {
+    if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
+      return 0;
+    }
+  } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
+    return 0;
+  }
+
+  if (alg->is_rsa_pss) {
+    if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
+        !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
+      return 0;
+    }
+  }
+
+  return 1;
+}
+
+enum ssl_private_key_result_t ssl_private_key_sign(
+    SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
+    uint16_t sigalg, Span<const uint8_t> in) {
+  SSL *const ssl = hs->ssl;
+  if (ssl->cert->key_method != NULL) {
+    enum ssl_private_key_result_t ret;
+    if (hs->pending_private_key_op) {
+      ret = ssl->cert->key_method->complete(ssl, out, out_len, max_out);
+    } else {
+      ret = ssl->cert->key_method->sign(ssl, out, out_len, max_out, sigalg,
+                                        in.data(), in.size());
+    }
+    if (ret == ssl_private_key_failure) {
+      OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
+    }
+    hs->pending_private_key_op = ret == ssl_private_key_retry;
+    return ret;
+  }
+
+  *out_len = max_out;
+  ScopedEVP_MD_CTX ctx;
+  if (!setup_ctx(ssl, ctx.get(), ssl->cert->privatekey, sigalg, 0 /* sign */) ||
+      !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
+    return ssl_private_key_failure;
+  }
+  return ssl_private_key_success;
+}
+
+bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
+                           uint16_t sigalg, EVP_PKEY *pkey,
+                           Span<const uint8_t> in) {
+  ScopedEVP_MD_CTX ctx;
+  return setup_ctx(ssl, ctx.get(), pkey, sigalg, 1 /* verify */) &&
+         EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
+                          in.data(), in.size());
+}
+
+enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
+                                                      uint8_t *out,
+                                                      size_t *out_len,
+                                                      size_t max_out,
+                                                      Span<const uint8_t> in) {
+  SSL *const ssl = hs->ssl;
+  if (ssl->cert->key_method != NULL) {
+    enum ssl_private_key_result_t ret;
+    if (hs->pending_private_key_op) {
+      ret = ssl->cert->key_method->complete(ssl, out, out_len, max_out);
+    } else {
+      ret = ssl->cert->key_method->decrypt(ssl, out, out_len, max_out,
+                                           in.data(), in.size());
+    }
+    if (ret == ssl_private_key_failure) {
+      OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
+    }
+    hs->pending_private_key_op = ret == ssl_private_key_retry;
+    return ret;
+  }
+
+  RSA *rsa = EVP_PKEY_get0_RSA(ssl->cert->privatekey);
+  if (rsa == NULL) {
+    // Decrypt operations are only supported for RSA keys.
+    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
+    return ssl_private_key_failure;
+  }
+
+  // Decrypt with no padding. PKCS#1 padding will be removed as part of the
+  // timing-sensitive code by the caller.
+  if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
+                   RSA_NO_PADDING)) {
+    return ssl_private_key_failure;
+  }
+  return ssl_private_key_success;
+}
+
+bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
+                                                  uint16_t sigalg) {
+  SSL *const ssl = hs->ssl;
+  if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
+    return false;
+  }
+
+  // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
+  // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
+  // hash in TLS. Reasonable RSA key sizes are large enough for the largest
+  // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
+  // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
+  // size so that we can fall back to another algorithm in that case.
+  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
+  if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
+                             2 * EVP_MD_size(alg->digest_func()) + 2) {
+    return false;
+  }
+
+  return true;
+}
+
+}  // namespace bssl
+
+using namespace bssl;
+
+int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
+  if (rsa == NULL) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
+    return 0;
+  }
+
+  UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
+  if (!pkey ||
+      !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
+    return 0;
+  }
+
+  return ssl_set_pkey(ssl->cert, pkey.get());
+}
+
+int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
+  UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
+  if (!rsa) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
+    return 0;
+  }
+
+  return SSL_use_RSAPrivateKey(ssl, rsa.get());
+}
+
+int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
+  if (pkey == NULL) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
+    return 0;
+  }
+
+  return ssl_set_pkey(ssl->cert, pkey);
+}
+
+int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
+                            size_t der_len) {
+  if (der_len > LONG_MAX) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
+    return 0;
+  }
+
+  const uint8_t *p = der;
+  UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
+  if (!pkey || p != der + der_len) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
+    return 0;
+  }
+
+  return SSL_use_PrivateKey(ssl, pkey.get());
+}
+
+int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
+  if (rsa == NULL) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
+    return 0;
+  }
+
+  UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
+  if (!pkey ||
+      !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
+    return 0;
+  }
+
+  return ssl_set_pkey(ctx->cert, pkey.get());
+}
+
+int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
+                                   size_t der_len) {
+  UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
+  if (!rsa) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
+    return 0;
+  }
+
+  return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
+}
+
+int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
+  if (pkey == NULL) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
+    return 0;
+  }
+
+  return ssl_set_pkey(ctx->cert, pkey);
+}
+
+int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
+                                size_t der_len) {
+  if (der_len > LONG_MAX) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
+    return 0;
+  }
+
+  const uint8_t *p = der;
+  UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
+  if (!pkey || p != der + der_len) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
+    return 0;
+  }
+
+  return SSL_CTX_use_PrivateKey(ctx, pkey.get());
+}
+
+void SSL_set_private_key_method(SSL *ssl,
+                                const SSL_PRIVATE_KEY_METHOD *key_method) {
+  ssl->cert->key_method = key_method;
+}
+
+void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
+                                    const SSL_PRIVATE_KEY_METHOD *key_method) {
+  ctx->cert->key_method = key_method;
+}
+
+const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
+                                             int include_curve) {
+  switch (sigalg) {
+    case SSL_SIGN_RSA_PKCS1_MD5_SHA1:
+      return "rsa_pkcs1_md5_sha1";
+    case SSL_SIGN_RSA_PKCS1_SHA1:
+      return "rsa_pkcs1_sha1";
+    case SSL_SIGN_RSA_PKCS1_SHA256:
+      return "rsa_pkcs1_sha256";
+    case SSL_SIGN_RSA_PKCS1_SHA384:
+      return "rsa_pkcs1_sha384";
+    case SSL_SIGN_RSA_PKCS1_SHA512:
+      return "rsa_pkcs1_sha512";
+    case SSL_SIGN_ECDSA_SHA1:
+      return "ecdsa_sha1";
+    case SSL_SIGN_ECDSA_SECP256R1_SHA256:
+      return include_curve ? "ecdsa_secp256r1_sha256" : "ecdsa_sha256";
+    case SSL_SIGN_ECDSA_SECP384R1_SHA384:
+      return include_curve ? "ecdsa_secp384r1_sha384" : "ecdsa_sha384";
+    case SSL_SIGN_ECDSA_SECP521R1_SHA512:
+      return include_curve ? "ecdsa_secp521r1_sha512" : "ecdsa_sha512";
+    case SSL_SIGN_RSA_PSS_SHA256:
+      return "rsa_pss_sha256";
+    case SSL_SIGN_RSA_PSS_SHA384:
+      return "rsa_pss_sha384";
+    case SSL_SIGN_RSA_PSS_SHA512:
+      return "rsa_pss_sha512";
+    case SSL_SIGN_ED25519:
+      return "ed25519";
+    default:
+      return NULL;
+  }
+}
+
+int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
+  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
+  return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
+}
+
+const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
+  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
+  if (alg == nullptr || alg->digest_func == nullptr) {
+    return nullptr;
+  }
+  return alg->digest_func();
+}
+
+int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
+  const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
+  return alg != nullptr && alg->is_rsa_pss;
+}
+
+static int set_algorithm_prefs(uint16_t **out_prefs, size_t *out_num_prefs,
+                               const uint16_t *prefs, size_t num_prefs) {
+  OPENSSL_free(*out_prefs);
+
+  *out_num_prefs = 0;
+  *out_prefs = (uint16_t *)BUF_memdup(prefs, num_prefs * sizeof(prefs[0]));
+  if (*out_prefs == NULL) {
+    OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
+    return 0;
+  }
+  *out_num_prefs = num_prefs;
+
+  return 1;
+}
+
+int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
+                                        size_t num_prefs) {
+  return set_algorithm_prefs(&ctx->cert->sigalgs, &ctx->cert->num_sigalgs,
+                             prefs, num_prefs);
+}
+
+int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
+                                    size_t num_prefs) {
+  return set_algorithm_prefs(&ssl->cert->sigalgs, &ssl->cert->num_sigalgs,
+                             prefs, num_prefs);
+}
+
+int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
+                                       size_t num_prefs) {
+  return set_algorithm_prefs(&ctx->verify_sigalgs, &ctx->num_verify_sigalgs,
+                             prefs, num_prefs);
+}