Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc-cloned / deps / grpc / third_party / abseil-cpp / absl / base / internal / thread_annotations.h
1 // Copyright 2019 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: thread_annotations.h
17 // -----------------------------------------------------------------------------
18 //
19 // WARNING: This is a backwards compatible header and it will be removed after
20 // the migration to prefixed thread annotations is finished; please include
21 // "absl/base/thread_annotations.h".
22 //
23 // This header file contains macro definitions for thread safety annotations
24 // that allow developers to document the locking policies of multi-threaded
25 // code. The annotations can also help program analysis tools to identify
26 // potential thread safety issues.
27 //
28 // These annotations are implemented using compiler attributes. Using the macros
29 // defined here instead of raw attributes allow for portability and future
30 // compatibility.
31 //
32 // When referring to mutexes in the arguments of the attributes, you should
33 // use variable names or more complex expressions (e.g. my_object->mutex_)
34 // that evaluate to a concrete mutex object whenever possible. If the mutex
35 // you want to refer to is not in scope, you may use a member pointer
36 // (e.g. &MyClass::mutex_) to refer to a mutex in some (unknown) object.
37
38 #ifndef ABSL_BASE_INTERNAL_THREAD_ANNOTATIONS_H_
39 #define ABSL_BASE_INTERNAL_THREAD_ANNOTATIONS_H_
40
41 #if defined(__clang__)
42 #define THREAD_ANNOTATION_ATTRIBUTE__(x)   __attribute__((x))
43 #else
44 #define THREAD_ANNOTATION_ATTRIBUTE__(x)   // no-op
45 #endif
46
47 // GUARDED_BY()
48 //
49 // Documents if a shared field or global variable needs to be protected by a
50 // mutex. GUARDED_BY() allows the user to specify a particular mutex that
51 // should be held when accessing the annotated variable.
52 //
53 // Although this annotation (and PT_GUARDED_BY, below) cannot be applied to
54 // local variables, a local variable and its associated mutex can often be
55 // combined into a small class or struct, thereby allowing the annotation.
56 //
57 // Example:
58 //
59 //   class Foo {
60 //     Mutex mu_;
61 //     int p1_ GUARDED_BY(mu_);
62 //     ...
63 //   };
64 #define GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x))
65
66 // PT_GUARDED_BY()
67 //
68 // Documents if the memory location pointed to by a pointer should be guarded
69 // by a mutex when dereferencing the pointer.
70 //
71 // Example:
72 //   class Foo {
73 //     Mutex mu_;
74 //     int *p1_ PT_GUARDED_BY(mu_);
75 //     ...
76 //   };
77 //
78 // Note that a pointer variable to a shared memory location could itself be a
79 // shared variable.
80 //
81 // Example:
82 //
83 //   // `q_`, guarded by `mu1_`, points to a shared memory location that is
84 //   // guarded by `mu2_`:
85 //   int *q_ GUARDED_BY(mu1_) PT_GUARDED_BY(mu2_);
86 #define PT_GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x))
87
88 // ACQUIRED_AFTER() / ACQUIRED_BEFORE()
89 //
90 // Documents the acquisition order between locks that can be held
91 // simultaneously by a thread. For any two locks that need to be annotated
92 // to establish an acquisition order, only one of them needs the annotation.
93 // (i.e. You don't have to annotate both locks with both ACQUIRED_AFTER
94 // and ACQUIRED_BEFORE.)
95 //
96 // As with GUARDED_BY, this is only applicable to mutexes that are shared
97 // fields or global variables.
98 //
99 // Example:
100 //
101 //   Mutex m1_;
102 //   Mutex m2_ ACQUIRED_AFTER(m1_);
103 #define ACQUIRED_AFTER(...) \
104   THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__))
105
106 #define ACQUIRED_BEFORE(...) \
107   THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__))
108
109 // EXCLUSIVE_LOCKS_REQUIRED() / SHARED_LOCKS_REQUIRED()
110 //
111 // Documents a function that expects a mutex to be held prior to entry.
112 // The mutex is expected to be held both on entry to, and exit from, the
113 // function.
114 //
115 // An exclusive lock allows read-write access to the guarded data member(s), and
116 // only one thread can acquire a lock exclusively at any one time. A shared lock
117 // allows read-only access, and any number of threads can acquire a shared lock
118 // concurrently.
119 //
120 // Generally, non-const methods should be annotated with
121 // EXCLUSIVE_LOCKS_REQUIRED, while const methods should be annotated with
122 // SHARED_LOCKS_REQUIRED.
123 //
124 // Example:
125 //
126 //   Mutex mu1, mu2;
127 //   int a GUARDED_BY(mu1);
128 //   int b GUARDED_BY(mu2);
129 //
130 //   void foo() EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2) { ... }
131 //   void bar() const SHARED_LOCKS_REQUIRED(mu1, mu2) { ... }
132 #define EXCLUSIVE_LOCKS_REQUIRED(...) \
133   THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__))
134
135 #define SHARED_LOCKS_REQUIRED(...) \
136   THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__))
137
138 // LOCKS_EXCLUDED()
139 //
140 // Documents the locks acquired in the body of the function. These locks
141 // cannot be held when calling this function (as Abseil's `Mutex` locks are
142 // non-reentrant).
143 #define LOCKS_EXCLUDED(...) \
144   THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__))
145
146 // LOCK_RETURNED()
147 //
148 // Documents a function that returns a mutex without acquiring it.  For example,
149 // a public getter method that returns a pointer to a private mutex should
150 // be annotated with LOCK_RETURNED.
151 #define LOCK_RETURNED(x) \
152   THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x))
153
154 // LOCKABLE
155 //
156 // Documents if a class/type is a lockable type (such as the `Mutex` class).
157 #define LOCKABLE \
158   THREAD_ANNOTATION_ATTRIBUTE__(lockable)
159
160 // SCOPED_LOCKABLE
161 //
162 // Documents if a class does RAII locking (such as the `MutexLock` class).
163 // The constructor should use `LOCK_FUNCTION()` to specify the mutex that is
164 // acquired, and the destructor should use `UNLOCK_FUNCTION()` with no
165 // arguments; the analysis will assume that the destructor unlocks whatever the
166 // constructor locked.
167 #define SCOPED_LOCKABLE \
168   THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable)
169
170 // EXCLUSIVE_LOCK_FUNCTION()
171 //
172 // Documents functions that acquire a lock in the body of a function, and do
173 // not release it.
174 #define EXCLUSIVE_LOCK_FUNCTION(...) \
175   THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__))
176
177 // SHARED_LOCK_FUNCTION()
178 //
179 // Documents functions that acquire a shared (reader) lock in the body of a
180 // function, and do not release it.
181 #define SHARED_LOCK_FUNCTION(...) \
182   THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__))
183
184 // UNLOCK_FUNCTION()
185 //
186 // Documents functions that expect a lock to be held on entry to the function,
187 // and release it in the body of the function.
188 #define UNLOCK_FUNCTION(...) \
189   THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__))
190
191 // EXCLUSIVE_TRYLOCK_FUNCTION() / SHARED_TRYLOCK_FUNCTION()
192 //
193 // Documents functions that try to acquire a lock, and return success or failure
194 // (or a non-boolean value that can be interpreted as a boolean).
195 // The first argument should be `true` for functions that return `true` on
196 // success, or `false` for functions that return `false` on success. The second
197 // argument specifies the mutex that is locked on success. If unspecified, this
198 // mutex is assumed to be `this`.
199 #define EXCLUSIVE_TRYLOCK_FUNCTION(...) \
200   THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__))
201
202 #define SHARED_TRYLOCK_FUNCTION(...) \
203   THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__))
204
205 // ASSERT_EXCLUSIVE_LOCK() / ASSERT_SHARED_LOCK()
206 //
207 // Documents functions that dynamically check to see if a lock is held, and fail
208 // if it is not held.
209 #define ASSERT_EXCLUSIVE_LOCK(...) \
210   THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__))
211
212 #define ASSERT_SHARED_LOCK(...) \
213   THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__))
214
215 // NO_THREAD_SAFETY_ANALYSIS
216 //
217 // Turns off thread safety checking within the body of a particular function.
218 // This annotation is used to mark functions that are known to be correct, but
219 // the locking behavior is more complicated than the analyzer can handle.
220 #define NO_THREAD_SAFETY_ANALYSIS \
221   THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis)
222
223 //------------------------------------------------------------------------------
224 // Tool-Supplied Annotations
225 //------------------------------------------------------------------------------
226
227 // TS_UNCHECKED should be placed around lock expressions that are not valid
228 // C++ syntax, but which are present for documentation purposes.  These
229 // annotations will be ignored by the analysis.
230 #define TS_UNCHECKED(x) ""
231
232 // TS_FIXME is used to mark lock expressions that are not valid C++ syntax.
233 // It is used by automated tools to mark and disable invalid expressions.
234 // The annotation should either be fixed, or changed to TS_UNCHECKED.
235 #define TS_FIXME(x) ""
236
237 // Like NO_THREAD_SAFETY_ANALYSIS, this turns off checking within the body of
238 // a particular function.  However, this attribute is used to mark functions
239 // that are incorrect and need to be fixed.  It is used by automated tools to
240 // avoid breaking the build when the analysis is updated.
241 // Code owners are expected to eventually fix the routine.
242 #define NO_THREAD_SAFETY_ANALYSIS_FIXME  NO_THREAD_SAFETY_ANALYSIS
243
244 // Similar to NO_THREAD_SAFETY_ANALYSIS_FIXME, this macro marks a GUARDED_BY
245 // annotation that needs to be fixed, because it is producing thread safety
246 // warning.  It disables the GUARDED_BY.
247 #define GUARDED_BY_FIXME(x)
248
249 // Disables warnings for a single read operation.  This can be used to avoid
250 // warnings when it is known that the read is not actually involved in a race,
251 // but the compiler cannot confirm that.
252 #define TS_UNCHECKED_READ(x) thread_safety_analysis::ts_unchecked_read(x)
253
254
255 namespace thread_safety_analysis {
256
257 // Takes a reference to a guarded data member, and returns an unguarded
258 // reference.
259 template <typename T>
260 inline const T& ts_unchecked_read(const T& v) NO_THREAD_SAFETY_ANALYSIS {
261   return v;
262 }
263
264 template <typename T>
265 inline T& ts_unchecked_read(T& v) NO_THREAD_SAFETY_ANALYSIS {
266   return v;
267 }
268
269 }  // namespace thread_safety_analysis
270
271 #endif  // ABSL_BASE_INTERNAL_THREAD_ANNOTATIONS_H_