Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc-cloned / deps / grpc / third_party / boringssl / crypto / cipher_extra / tls_cbc.c
1 /* ====================================================================
2  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ====================================================================
48  *
49  * This product includes cryptographic software written by Eric Young
50  * (eay@cryptsoft.com).  This product includes software written by Tim
51  * Hudson (tjh@cryptsoft.com). */
52
53 #include <assert.h>
54 #include <string.h>
55
56 #include <openssl/digest.h>
57 #include <openssl/nid.h>
58 #include <openssl/sha.h>
59
60 #include "../internal.h"
61 #include "internal.h"
62 #include "../fipsmodule/cipher/internal.h"
63
64
65 // MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
66 // field. (SHA-384/512 have 128-bit length.)
67 #define MAX_HASH_BIT_COUNT_BYTES 16
68
69 // MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
70 // Currently SHA-384/512 has a 128-byte block size and that's the largest
71 // supported by TLS.)
72 #define MAX_HASH_BLOCK_SIZE 128
73
74 int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len,
75                                const uint8_t *in, size_t in_len,
76                                size_t block_size, size_t mac_size) {
77   const size_t overhead = 1 /* padding length byte */ + mac_size;
78
79   // These lengths are all public so we can test them in non-constant time.
80   if (overhead > in_len) {
81     return 0;
82   }
83
84   size_t padding_length = in[in_len - 1];
85
86   crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length);
87   // The padding consists of a length byte at the end of the record and
88   // then that many bytes of padding, all with the same value as the
89   // length byte. Thus, with the length byte included, there are i+1
90   // bytes of padding.
91   //
92   // We can't check just |padding_length+1| bytes because that leaks
93   // decrypted information. Therefore we always have to check the maximum
94   // amount of padding possible. (Again, the length of the record is
95   // public information so we can use it.)
96   size_t to_check = 256;  // maximum amount of padding, inc length byte.
97   if (to_check > in_len) {
98     to_check = in_len;
99   }
100
101   for (size_t i = 0; i < to_check; i++) {
102     uint8_t mask = constant_time_ge_8(padding_length, i);
103     uint8_t b = in[in_len - 1 - i];
104     // The final |padding_length+1| bytes should all have the value
105     // |padding_length|. Therefore the XOR should be zero.
106     good &= ~(mask & (padding_length ^ b));
107   }
108
109   // If any of the final |padding_length+1| bytes had the wrong value,
110   // one or more of the lower eight bits of |good| will be cleared.
111   good = constant_time_eq_w(0xff, good & 0xff);
112
113   // Always treat |padding_length| as zero on error. If, assuming block size of
114   // 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
115   // and returned -1, distinguishing good MAC and bad padding from bad MAC and
116   // bad padding would give POODLE's padding oracle.
117   padding_length = good & (padding_length + 1);
118   *out_len = in_len - padding_length;
119   *out_padding_ok = good;
120   return 1;
121 }
122
123 void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in,
124                           size_t in_len, size_t orig_len) {
125   uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE];
126   uint8_t *rotated_mac = rotated_mac1;
127   uint8_t *rotated_mac_tmp = rotated_mac2;
128
129   // mac_end is the index of |in| just after the end of the MAC.
130   size_t mac_end = in_len;
131   size_t mac_start = mac_end - md_size;
132
133   assert(orig_len >= in_len);
134   assert(in_len >= md_size);
135   assert(md_size <= EVP_MAX_MD_SIZE);
136
137   // scan_start contains the number of bytes that we can ignore because
138   // the MAC's position can only vary by 255 bytes.
139   size_t scan_start = 0;
140   // This information is public so it's safe to branch based on it.
141   if (orig_len > md_size + 255 + 1) {
142     scan_start = orig_len - (md_size + 255 + 1);
143   }
144
145   size_t rotate_offset = 0;
146   uint8_t mac_started = 0;
147   OPENSSL_memset(rotated_mac, 0, md_size);
148   for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) {
149     if (j >= md_size) {
150       j -= md_size;
151     }
152     crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start);
153     mac_started |= is_mac_start;
154     uint8_t mac_ended = constant_time_ge_8(i, mac_end);
155     rotated_mac[j] |= in[i] & mac_started & ~mac_ended;
156     // Save the offset that |mac_start| is mapped to.
157     rotate_offset |= j & is_mac_start;
158   }
159
160   // Now rotate the MAC. We rotate in log(md_size) steps, one for each bit
161   // position.
162   for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) {
163     // Rotate by |offset| iff the corresponding bit is set in
164     // |rotate_offset|, placing the result in |rotated_mac_tmp|.
165     const uint8_t skip_rotate = (rotate_offset & 1) - 1;
166     for (size_t i = 0, j = offset; i < md_size; i++, j++) {
167       if (j >= md_size) {
168         j -= md_size;
169       }
170       rotated_mac_tmp[i] =
171           constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]);
172     }
173
174     // Swap pointers so |rotated_mac| contains the (possibly) rotated value.
175     // Note the number of iterations and thus the identity of these pointers is
176     // public information.
177     uint8_t *tmp = rotated_mac;
178     rotated_mac = rotated_mac_tmp;
179     rotated_mac_tmp = tmp;
180   }
181
182   OPENSSL_memcpy(out, rotated_mac, md_size);
183 }
184
185 // u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
186 // big-endian order. The value of p is advanced by four.
187 #define u32toBE(n, p)                \
188   do {                               \
189     *((p)++) = (uint8_t)((n) >> 24); \
190     *((p)++) = (uint8_t)((n) >> 16); \
191     *((p)++) = (uint8_t)((n) >> 8);  \
192     *((p)++) = (uint8_t)((n));       \
193   } while (0)
194
195 // u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in
196 // big-endian order. The value of p is advanced by eight.
197 #define u64toBE(n, p)                \
198   do {                               \
199     *((p)++) = (uint8_t)((n) >> 56); \
200     *((p)++) = (uint8_t)((n) >> 48); \
201     *((p)++) = (uint8_t)((n) >> 40); \
202     *((p)++) = (uint8_t)((n) >> 32); \
203     *((p)++) = (uint8_t)((n) >> 24); \
204     *((p)++) = (uint8_t)((n) >> 16); \
205     *((p)++) = (uint8_t)((n) >> 8);  \
206     *((p)++) = (uint8_t)((n));       \
207   } while (0)
208
209 typedef union {
210   SHA_CTX sha1;
211   SHA256_CTX sha256;
212   SHA512_CTX sha512;
213 } HASH_CTX;
214
215 static void tls1_sha1_transform(HASH_CTX *ctx, const uint8_t *block) {
216   SHA1_Transform(&ctx->sha1, block);
217 }
218
219 static void tls1_sha256_transform(HASH_CTX *ctx, const uint8_t *block) {
220   SHA256_Transform(&ctx->sha256, block);
221 }
222
223 static void tls1_sha512_transform(HASH_CTX *ctx, const uint8_t *block) {
224   SHA512_Transform(&ctx->sha512, block);
225 }
226
227 // These functions serialize the state of a hash and thus perform the standard
228 // "final" operation without adding the padding and length that such a function
229 // typically does.
230 static void tls1_sha1_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
231   SHA_CTX *sha1 = &ctx->sha1;
232   u32toBE(sha1->h[0], md_out);
233   u32toBE(sha1->h[1], md_out);
234   u32toBE(sha1->h[2], md_out);
235   u32toBE(sha1->h[3], md_out);
236   u32toBE(sha1->h[4], md_out);
237 }
238
239 static void tls1_sha256_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
240   SHA256_CTX *sha256 = &ctx->sha256;
241   for (unsigned i = 0; i < 8; i++) {
242     u32toBE(sha256->h[i], md_out);
243   }
244 }
245
246 static void tls1_sha512_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
247   SHA512_CTX *sha512 = &ctx->sha512;
248   for (unsigned i = 0; i < 8; i++) {
249     u64toBE(sha512->h[i], md_out);
250   }
251 }
252
253 int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) {
254   switch (EVP_MD_type(md)) {
255     case NID_sha1:
256     case NID_sha256:
257     case NID_sha384:
258       return 1;
259
260     default:
261       return 0;
262   }
263 }
264
265 int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
266                               size_t *md_out_size, const uint8_t header[13],
267                               const uint8_t *data, size_t data_plus_mac_size,
268                               size_t data_plus_mac_plus_padding_size,
269                               const uint8_t *mac_secret,
270                               unsigned mac_secret_length) {
271   HASH_CTX md_state;
272   void (*md_final_raw)(HASH_CTX *ctx, uint8_t *md_out);
273   void (*md_transform)(HASH_CTX *ctx, const uint8_t *block);
274   unsigned md_size, md_block_size = 64;
275   // md_length_size is the number of bytes in the length field that terminates
276   // the hash.
277   unsigned md_length_size = 8;
278
279   // Bound the acceptable input so we can forget about many possible overflows
280   // later in this function. This is redundant with the record size limits in
281   // TLS.
282   if (data_plus_mac_plus_padding_size >= 1024 * 1024) {
283     assert(0);
284     return 0;
285   }
286
287   switch (EVP_MD_type(md)) {
288     case NID_sha1:
289       SHA1_Init(&md_state.sha1);
290       md_final_raw = tls1_sha1_final_raw;
291       md_transform = tls1_sha1_transform;
292       md_size = SHA_DIGEST_LENGTH;
293       break;
294
295     case NID_sha256:
296       SHA256_Init(&md_state.sha256);
297       md_final_raw = tls1_sha256_final_raw;
298       md_transform = tls1_sha256_transform;
299       md_size = SHA256_DIGEST_LENGTH;
300       break;
301
302     case NID_sha384:
303       SHA384_Init(&md_state.sha512);
304       md_final_raw = tls1_sha512_final_raw;
305       md_transform = tls1_sha512_transform;
306       md_size = SHA384_DIGEST_LENGTH;
307       md_block_size = 128;
308       md_length_size = 16;
309       break;
310
311     default:
312       // EVP_tls_cbc_record_digest_supported should have been called first to
313       // check that the hash function is supported.
314       assert(0);
315       *md_out_size = 0;
316       return 0;
317   }
318
319   assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
320   assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
321   assert(md_size <= EVP_MAX_MD_SIZE);
322
323   static const size_t kHeaderLength = 13;
324
325   // kVarianceBlocks is the number of blocks of the hash that we have to
326   // calculate in constant time because they could be altered by the
327   // padding value.
328   //
329   // TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
330   // required to be minimal. Therefore we say that the final six blocks
331   // can vary based on the padding.
332   static const size_t kVarianceBlocks = 6;
333
334   // From now on we're dealing with the MAC, which conceptually has 13
335   // bytes of `header' before the start of the data.
336   size_t len = data_plus_mac_plus_padding_size + kHeaderLength;
337   // max_mac_bytes contains the maximum bytes of bytes in the MAC, including
338   // |header|, assuming that there's no padding.
339   size_t max_mac_bytes = len - md_size - 1;
340   // num_blocks is the maximum number of hash blocks.
341   size_t num_blocks =
342       (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
343   // In order to calculate the MAC in constant time we have to handle
344   // the final blocks specially because the padding value could cause the
345   // end to appear somewhere in the final |kVarianceBlocks| blocks and we
346   // can't leak where. However, |num_starting_blocks| worth of data can
347   // be hashed right away because no padding value can affect whether
348   // they are plaintext.
349   size_t num_starting_blocks = 0;
350   // k is the starting byte offset into the conceptual header||data where
351   // we start processing.
352   size_t k = 0;
353   // mac_end_offset is the index just past the end of the data to be
354   // MACed.
355   size_t mac_end_offset = data_plus_mac_size + kHeaderLength - md_size;
356   // c is the index of the 0x80 byte in the final hash block that
357   // contains application data.
358   size_t c = mac_end_offset % md_block_size;
359   // index_a is the hash block number that contains the 0x80 terminating
360   // value.
361   size_t index_a = mac_end_offset / md_block_size;
362   // index_b is the hash block number that contains the 64-bit hash
363   // length, in bits.
364   size_t index_b = (mac_end_offset + md_length_size) / md_block_size;
365
366   if (num_blocks > kVarianceBlocks) {
367     num_starting_blocks = num_blocks - kVarianceBlocks;
368     k = md_block_size * num_starting_blocks;
369   }
370
371   // bits is the hash-length in bits. It includes the additional hash
372   // block for the masked HMAC key.
373   size_t bits = 8 * mac_end_offset;  // at most 18 bits to represent
374
375   // Compute the initial HMAC block.
376   bits += 8 * md_block_size;
377   // hmac_pad is the masked HMAC key.
378   uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE];
379   OPENSSL_memset(hmac_pad, 0, md_block_size);
380   assert(mac_secret_length <= sizeof(hmac_pad));
381   OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
382   for (size_t i = 0; i < md_block_size; i++) {
383     hmac_pad[i] ^= 0x36;
384   }
385
386   md_transform(&md_state, hmac_pad);
387
388   // The length check means |bits| fits in four bytes.
389   uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES];
390   OPENSSL_memset(length_bytes, 0, md_length_size - 4);
391   length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24);
392   length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16);
393   length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8);
394   length_bytes[md_length_size - 1] = (uint8_t)bits;
395
396   if (k > 0) {
397     // k is a multiple of md_block_size.
398     uint8_t first_block[MAX_HASH_BLOCK_SIZE];
399     OPENSSL_memcpy(first_block, header, 13);
400     OPENSSL_memcpy(first_block + 13, data, md_block_size - 13);
401     md_transform(&md_state, first_block);
402     for (size_t i = 1; i < k / md_block_size; i++) {
403       md_transform(&md_state, data + md_block_size * i - 13);
404     }
405   }
406
407   uint8_t mac_out[EVP_MAX_MD_SIZE];
408   OPENSSL_memset(mac_out, 0, sizeof(mac_out));
409
410   // We now process the final hash blocks. For each block, we construct
411   // it in constant time. If the |i==index_a| then we'll include the 0x80
412   // bytes and zero pad etc. For each block we selectively copy it, in
413   // constant time, to |mac_out|.
414   for (size_t i = num_starting_blocks;
415        i <= num_starting_blocks + kVarianceBlocks; i++) {
416     uint8_t block[MAX_HASH_BLOCK_SIZE];
417     uint8_t is_block_a = constant_time_eq_8(i, index_a);
418     uint8_t is_block_b = constant_time_eq_8(i, index_b);
419     for (size_t j = 0; j < md_block_size; j++) {
420       uint8_t b = 0;
421       if (k < kHeaderLength) {
422         b = header[k];
423       } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) {
424         b = data[k - kHeaderLength];
425       }
426       k++;
427
428       uint8_t is_past_c = is_block_a & constant_time_ge_8(j, c);
429       uint8_t is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
430       // If this is the block containing the end of the
431       // application data, and we are at the offset for the
432       // 0x80 value, then overwrite b with 0x80.
433       b = constant_time_select_8(is_past_c, 0x80, b);
434       // If this the the block containing the end of the
435       // application data and we're past the 0x80 value then
436       // just write zero.
437       b = b & ~is_past_cp1;
438       // If this is index_b (the final block), but not
439       // index_a (the end of the data), then the 64-bit
440       // length didn't fit into index_a and we're having to
441       // add an extra block of zeros.
442       b &= ~is_block_b | is_block_a;
443
444       // The final bytes of one of the blocks contains the
445       // length.
446       if (j >= md_block_size - md_length_size) {
447         // If this is index_b, write a length byte.
448         b = constant_time_select_8(
449             is_block_b, length_bytes[j - (md_block_size - md_length_size)], b);
450       }
451       block[j] = b;
452     }
453
454     md_transform(&md_state, block);
455     md_final_raw(&md_state, block);
456     // If this is index_b, copy the hash value to |mac_out|.
457     for (size_t j = 0; j < md_size; j++) {
458       mac_out[j] |= block[j] & is_block_b;
459     }
460   }
461
462   EVP_MD_CTX md_ctx;
463   EVP_MD_CTX_init(&md_ctx);
464   if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) {
465     EVP_MD_CTX_cleanup(&md_ctx);
466     return 0;
467   }
468
469   // Complete the HMAC in the standard manner.
470   for (size_t i = 0; i < md_block_size; i++) {
471     hmac_pad[i] ^= 0x6a;
472   }
473
474   EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
475   EVP_DigestUpdate(&md_ctx, mac_out, md_size);
476   unsigned md_out_size_u;
477   EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
478   *md_out_size = md_out_size_u;
479   EVP_MD_CTX_cleanup(&md_ctx);
480
481   return 1;
482 }