Built motion from commit 6a09e18b.|2.6.11
[motion2.git] / legacy-libs / grpc-cloned / deps / grpc / third_party / boringssl / crypto / obj / obj.c
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56
57 #if !defined(__STDC_FORMAT_MACROS)
58 #define __STDC_FORMAT_MACROS
59 #endif
60
61 #include <openssl/obj.h>
62
63 #include <inttypes.h>
64 #include <limits.h>
65 #include <string.h>
66
67 #include <openssl/asn1.h>
68 #include <openssl/buf.h>
69 #include <openssl/bytestring.h>
70 #include <openssl/err.h>
71 #include <openssl/lhash.h>
72 #include <openssl/mem.h>
73 #include <openssl/thread.h>
74
75 #include "obj_dat.h"
76 #include "../internal.h"
77
78
79 static struct CRYPTO_STATIC_MUTEX global_added_lock = CRYPTO_STATIC_MUTEX_INIT;
80 // These globals are protected by |global_added_lock|.
81 static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
82 static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
83 static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
84 static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
85
86 static struct CRYPTO_STATIC_MUTEX global_next_nid_lock =
87     CRYPTO_STATIC_MUTEX_INIT;
88 static unsigned global_next_nid = NUM_NID;
89
90 static int obj_next_nid(void) {
91   int ret;
92
93   CRYPTO_STATIC_MUTEX_lock_write(&global_next_nid_lock);
94   ret = global_next_nid++;
95   CRYPTO_STATIC_MUTEX_unlock_write(&global_next_nid_lock);
96
97   return ret;
98 }
99
100 ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
101   ASN1_OBJECT *r;
102   unsigned char *data = NULL;
103   char *sn = NULL, *ln = NULL;
104
105   if (o == NULL) {
106     return NULL;
107   }
108
109   if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
110     // TODO(fork): this is a little dangerous.
111     return (ASN1_OBJECT *)o;
112   }
113
114   r = ASN1_OBJECT_new();
115   if (r == NULL) {
116     OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
117     return NULL;
118   }
119   r->ln = r->sn = NULL;
120
121   data = OPENSSL_malloc(o->length);
122   if (data == NULL) {
123     goto err;
124   }
125   if (o->data != NULL) {
126     OPENSSL_memcpy(data, o->data, o->length);
127   }
128
129   // once data is attached to an object, it remains const
130   r->data = data;
131   r->length = o->length;
132   r->nid = o->nid;
133
134   if (o->ln != NULL) {
135     ln = OPENSSL_strdup(o->ln);
136     if (ln == NULL) {
137       goto err;
138     }
139   }
140
141   if (o->sn != NULL) {
142     sn = OPENSSL_strdup(o->sn);
143     if (sn == NULL) {
144       goto err;
145     }
146   }
147
148   r->sn = sn;
149   r->ln = ln;
150
151   r->flags =
152       o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
153                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
154   return r;
155
156 err:
157   OPENSSL_PUT_ERROR(OBJ, ERR_R_MALLOC_FAILURE);
158   OPENSSL_free(ln);
159   OPENSSL_free(sn);
160   OPENSSL_free(data);
161   OPENSSL_free(r);
162   return NULL;
163 }
164
165 int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
166   int ret;
167
168   ret = a->length - b->length;
169   if (ret) {
170     return ret;
171   }
172   return OPENSSL_memcmp(a->data, b->data, a->length);
173 }
174
175 const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) {
176   if (obj == NULL) {
177     return NULL;
178   }
179
180   return obj->data;
181 }
182
183 size_t OBJ_length(const ASN1_OBJECT *obj) {
184   if (obj == NULL || obj->length < 0) {
185     return 0;
186   }
187
188   return (size_t)obj->length;
189 }
190
191 // obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
192 // an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
193 // unsigned int in the array.
194 static int obj_cmp(const void *key, const void *element) {
195   unsigned nid = *((const unsigned*) element);
196   const ASN1_OBJECT *a = key;
197   const ASN1_OBJECT *b = &kObjects[nid];
198
199   if (a->length < b->length) {
200     return -1;
201   } else if (a->length > b->length) {
202     return 1;
203   }
204   return OPENSSL_memcmp(a->data, b->data, a->length);
205 }
206
207 int OBJ_obj2nid(const ASN1_OBJECT *obj) {
208   const unsigned int *nid_ptr;
209
210   if (obj == NULL) {
211     return NID_undef;
212   }
213
214   if (obj->nid != 0) {
215     return obj->nid;
216   }
217
218   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
219   if (global_added_by_data != NULL) {
220     ASN1_OBJECT *match;
221
222     match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
223     if (match != NULL) {
224       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
225       return match->nid;
226     }
227   }
228   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
229
230   nid_ptr = bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder),
231                     sizeof(kNIDsInOIDOrder[0]), obj_cmp);
232   if (nid_ptr == NULL) {
233     return NID_undef;
234   }
235
236   return kObjects[*nid_ptr].nid;
237 }
238
239 int OBJ_cbs2nid(const CBS *cbs) {
240   if (CBS_len(cbs) > INT_MAX) {
241     return NID_undef;
242   }
243
244   ASN1_OBJECT obj;
245   OPENSSL_memset(&obj, 0, sizeof(obj));
246   obj.data = CBS_data(cbs);
247   obj.length = (int)CBS_len(cbs);
248
249   return OBJ_obj2nid(&obj);
250 }
251
252 // short_name_cmp is called to search the kNIDsInShortNameOrder array. The
253 // |key| argument is name that we're looking for and |element| is a pointer to
254 // an unsigned int in the array.
255 static int short_name_cmp(const void *key, const void *element) {
256   const char *name = (const char *) key;
257   unsigned nid = *((unsigned*) element);
258
259   return strcmp(name, kObjects[nid].sn);
260 }
261
262 int OBJ_sn2nid(const char *short_name) {
263   const unsigned int *nid_ptr;
264
265   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
266   if (global_added_by_short_name != NULL) {
267     ASN1_OBJECT *match, template;
268
269     template.sn = short_name;
270     match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &template);
271     if (match != NULL) {
272       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
273       return match->nid;
274     }
275   }
276   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
277
278   nid_ptr = bsearch(short_name, kNIDsInShortNameOrder,
279                     OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder),
280                     sizeof(kNIDsInShortNameOrder[0]), short_name_cmp);
281   if (nid_ptr == NULL) {
282     return NID_undef;
283   }
284
285   return kObjects[*nid_ptr].nid;
286 }
287
288 // long_name_cmp is called to search the kNIDsInLongNameOrder array. The
289 // |key| argument is name that we're looking for and |element| is a pointer to
290 // an unsigned int in the array.
291 static int long_name_cmp(const void *key, const void *element) {
292   const char *name = (const char *) key;
293   unsigned nid = *((unsigned*) element);
294
295   return strcmp(name, kObjects[nid].ln);
296 }
297
298 int OBJ_ln2nid(const char *long_name) {
299   const unsigned int *nid_ptr;
300
301   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
302   if (global_added_by_long_name != NULL) {
303     ASN1_OBJECT *match, template;
304
305     template.ln = long_name;
306     match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &template);
307     if (match != NULL) {
308       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
309       return match->nid;
310     }
311   }
312   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
313
314   nid_ptr = bsearch(long_name, kNIDsInLongNameOrder,
315                     OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder),
316                     sizeof(kNIDsInLongNameOrder[0]), long_name_cmp);
317   if (nid_ptr == NULL) {
318     return NID_undef;
319   }
320
321   return kObjects[*nid_ptr].nid;
322 }
323
324 int OBJ_txt2nid(const char *s) {
325   ASN1_OBJECT *obj;
326   int nid;
327
328   obj = OBJ_txt2obj(s, 0 /* search names */);
329   nid = OBJ_obj2nid(obj);
330   ASN1_OBJECT_free(obj);
331   return nid;
332 }
333
334 OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
335   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
336   CBB oid;
337
338   if (obj == NULL ||
339       !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
340       !CBB_add_bytes(&oid, obj->data, obj->length) ||
341       !CBB_flush(out)) {
342     return 0;
343   }
344
345   return 1;
346 }
347
348 const ASN1_OBJECT *OBJ_nid2obj(int nid) {
349   if (nid >= 0 && nid < NUM_NID) {
350     if (nid != NID_undef && kObjects[nid].nid == NID_undef) {
351       goto err;
352     }
353     return &kObjects[nid];
354   }
355
356   CRYPTO_STATIC_MUTEX_lock_read(&global_added_lock);
357   if (global_added_by_nid != NULL) {
358     ASN1_OBJECT *match, template;
359
360     template.nid = nid;
361     match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &template);
362     if (match != NULL) {
363       CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
364       return match;
365     }
366   }
367   CRYPTO_STATIC_MUTEX_unlock_read(&global_added_lock);
368
369 err:
370   OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
371   return NULL;
372 }
373
374 const char *OBJ_nid2sn(int nid) {
375   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
376   if (obj == NULL) {
377     return NULL;
378   }
379
380   return obj->sn;
381 }
382
383 const char *OBJ_nid2ln(int nid) {
384   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
385   if (obj == NULL) {
386     return NULL;
387   }
388
389   return obj->ln;
390 }
391
392 static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void),
393                                                 const char *oid,
394                                                 const char *short_name,
395                                                 const char *long_name) {
396   uint8_t *buf;
397   size_t len;
398   CBB cbb;
399   if (!CBB_init(&cbb, 32) ||
400       !CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) ||
401       !CBB_finish(&cbb, &buf, &len)) {
402     OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING);
403     CBB_cleanup(&cbb);
404     return NULL;
405   }
406
407   ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf,
408                                         len, short_name, long_name);
409   OPENSSL_free(buf);
410   return ret;
411 }
412
413 ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
414   if (!dont_search_names) {
415     int nid = OBJ_sn2nid(s);
416     if (nid == NID_undef) {
417       nid = OBJ_ln2nid(s);
418     }
419
420     if (nid != NID_undef) {
421       return (ASN1_OBJECT*) OBJ_nid2obj(nid);
422     }
423   }
424
425   return create_object_with_text_oid(NULL, s, NULL, NULL);
426 }
427
428 static int strlcpy_int(char *dst, const char *src, int dst_size) {
429   size_t ret = BUF_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
430   if (ret > INT_MAX) {
431     OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
432     return -1;
433   }
434   return (int)ret;
435 }
436
437 int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
438                 int always_return_oid) {
439   // Python depends on the empty OID successfully encoding as the empty
440   // string.
441   if (obj == NULL || obj->length == 0) {
442     return strlcpy_int(out, "", out_len);
443   }
444
445   if (!always_return_oid) {
446     int nid = OBJ_obj2nid(obj);
447     if (nid != NID_undef) {
448       const char *name = OBJ_nid2ln(nid);
449       if (name == NULL) {
450         name = OBJ_nid2sn(nid);
451       }
452       if (name != NULL) {
453         return strlcpy_int(out, name, out_len);
454       }
455     }
456   }
457
458   CBS cbs;
459   CBS_init(&cbs, obj->data, obj->length);
460   char *txt = CBS_asn1_oid_to_text(&cbs);
461   if (txt == NULL) {
462     if (out_len > 0) {
463       out[0] = '\0';
464     }
465     return -1;
466   }
467
468   int ret = strlcpy_int(out, txt, out_len);
469   OPENSSL_free(txt);
470   return ret;
471 }
472
473 static uint32_t hash_nid(const ASN1_OBJECT *obj) {
474   return obj->nid;
475 }
476
477 static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
478   return a->nid - b->nid;
479 }
480
481 static uint32_t hash_data(const ASN1_OBJECT *obj) {
482   return OPENSSL_hash32(obj->data, obj->length);
483 }
484
485 static int cmp_data(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
486   int i = a->length - b->length;
487   if (i) {
488     return i;
489   }
490   return OPENSSL_memcmp(a->data, b->data, a->length);
491 }
492
493 static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
494   return lh_strhash(obj->sn);
495 }
496
497 static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
498   return strcmp(a->sn, b->sn);
499 }
500
501 static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
502   return lh_strhash(obj->ln);
503 }
504
505 static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
506   return strcmp(a->ln, b->ln);
507 }
508
509 // obj_add_object inserts |obj| into the various global hashes for run-time
510 // added objects. It returns one on success or zero otherwise.
511 static int obj_add_object(ASN1_OBJECT *obj) {
512   int ok;
513   ASN1_OBJECT *old_object;
514
515   obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
516                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
517
518   CRYPTO_STATIC_MUTEX_lock_write(&global_added_lock);
519   if (global_added_by_nid == NULL) {
520     global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
521     global_added_by_data = lh_ASN1_OBJECT_new(hash_data, cmp_data);
522     global_added_by_short_name = lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
523     global_added_by_long_name = lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
524   }
525
526   // We don't pay attention to |old_object| (which contains any previous object
527   // that was evicted from the hashes) because we don't have a reference count
528   // on ASN1_OBJECT values. Also, we should never have duplicates nids and so
529   // should always have objects in |global_added_by_nid|.
530
531   ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
532   if (obj->length != 0 && obj->data != NULL) {
533     ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
534   }
535   if (obj->sn != NULL) {
536     ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
537   }
538   if (obj->ln != NULL) {
539     ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
540   }
541   CRYPTO_STATIC_MUTEX_unlock_write(&global_added_lock);
542
543   return ok;
544 }
545
546 int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
547   ASN1_OBJECT *op =
548       create_object_with_text_oid(obj_next_nid, oid, short_name, long_name);
549   if (op == NULL ||
550       !obj_add_object(op)) {
551     return NID_undef;
552   }
553   return op->nid;
554 }